已知函數(shù)y=f(x)的圖象關(guān)于y軸對稱,且滿足f(x-2)=ax2-(a-3)x+(a-2).
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)g(x)=f[f(x)],F(xiàn)(x)=pg(x)+f(x),問是否存在p(p<0)使F(x)在區(qū)間(-∞,-3]上是減函數(shù),且在區(qū)間(-3,0)內(nèi)是增函數(shù)?試證明你的結(jié)論.
(Ⅰ)令x-2=t,則x=t+2.
由于f(x-2)=ax2-(a-3)x+(a-2),
所以f(t)=a(t+2)2-(a-3)(t+2)+(a-2)
=at2+3(a+1)t+(3a+4)
∴f(x)=ax2+3(a+1)x+(3a+4)
∵y=f(x)的圖象關(guān)于y軸對稱
∴a≠0且3(a+1)=0,即a=-1
故f(x)=-x2+1
(Ⅱ)g(x)=f[f(x)]=-(-x2+1)2+1
=-x4+2x2F(x)=pg(x)+f(x)=-px4+(2p-1)x2+1
設(shè)存在p(p<0),使F(x)滿足題目要求,
則當-∞<x1<x2≤-3時,
F(x)是減函數(shù),即F(x1)-F(x2
=(x12-x22)[2p-1-p(x12+x22)]>0
由假設(shè)-x1>-x2≥3>0,∴x12>x22>9
∴2p-1-p(x12+x22)>0 ①
又p<0,x12+x22>18∴-p(x12+x22)>-18p
∴2p-1-p(x12+x22)>2p-1-18p=-16p-1
要使①式恒成立,只須-16p-1≥0即p≤-
1
16

又當-3<x1<x2<0時,F(xiàn)(x)是增函數(shù),
即F(x1)-F(x2)<0,也就是2p-1-p(x12+x22)<0 ②
此時0<-x2<-x1<3.x12+x22<18-p(x12+x22)<-18p,
2p-1-p(x12+x22)<-16p-1
要使②式恒成立,只須-16p-1≤0即p≥-
1
16

故存在p=-
1
16
滿足題目要求.
另依題意F(-3)是F(x)的極小值,∴F′(-3)=0.
∵F'(x)=-4px3+2(2p-1)x,∴-4p(-3)3+2(2p-1)(-3)=0,
p=-
1
16
.當p=-
1
16
時,
F(x)=
1
16
x4-
9
8
x2+1
,F′(x)=
1
4
x3-
9
4
x=
1
4
x(x2-9)

∴當x<-3時,F(xiàn)'(x)<0,F(xiàn)(x)在(-∞,-3]上是減函數(shù);
當x∈(-3,0)時,F(xiàn)(x)是增函數(shù).
故存在p=-
1
16
滿足題目要求.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

16、已知函數(shù)y=f(x)是R上的奇函數(shù)且在[0,+∞)上是增函數(shù),若f(a+2)+f(a)>0,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

2、已知函數(shù)y=f(x+1)的圖象過點(3,2),則函數(shù)f(x)的圖象關(guān)于x軸的對稱圖形一定過點( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x)是偶函數(shù),當x<0時,f(x)=x(1-x),那么當x>0時,f(x)=
-x(1+x)
-x(1+x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x)是定義在R上的奇函數(shù),當x>0 時,f(x)的圖象如圖所示,則不等式x[f(x)-f(-x)]≤0 的解集為
[-3,3]
[-3,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x)的圖象如圖,則滿足f(log2(x-1))•f(2-x2-1)≥0的x的取值范圍為
(1,3]
(1,3]

查看答案和解析>>

同步練習(xí)冊答案