已知定義域?yàn)镽的函數(shù)f(x)滿足f(2+x)=f(2-x)對任意實(shí)數(shù)x恒成立,當(dāng)x≥2時(shí),f(x)為增函數(shù),則下列關(guān)系一定正確的是( 。
A、f(7)<f(-2)
B、f(7)>f(-2)
C、f(6)>f(-2)
D、f(6)<f(-2)
考點(diǎn):函數(shù)單調(diào)性的性質(zhì),函數(shù)恒成立問題
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由已知f(2+x)=f(2-x)得到函數(shù)的對稱軸方程,再由x≥2時(shí),f(x)為增函數(shù)得到當(dāng)x∈(-∞,2)時(shí)函數(shù)為減函數(shù),則f(7)與f(-2)的大小可求.
解答: 解:∵定義域?yàn)镽的函數(shù)f(x)滿足f(2+x)=f(2-x),
∴函數(shù)f(x)的對稱軸方程為:x=2.
又當(dāng)x≥2時(shí),f(x)為增函數(shù),
∴當(dāng)x∈(-∞,2)時(shí)函數(shù)為減函數(shù),
則f(7)=f(-3)>f(-2).
故選:B.
點(diǎn)評:本題考查了函數(shù)單調(diào)性的性質(zhì),考查了函數(shù)的對稱性,若函數(shù)f(x)滿足f(a+x)=f(b-x),則函數(shù)的對稱軸為x=
a+b
2
,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x,y滿足x+4y=40且x,y∈R+,則lgx+lgy的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=cos
π
2
x•cos
π
2
(x-1)的最小正周期是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

證明:
1
2x2
-
1
2x1
=
2x1-2x2
2x1+x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

比較sin31°、cos58°、tan32°三者的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}、{bn}中,{an}的前n項(xiàng)和為Sn,點(diǎn)(bn,n)、(n,Sn)分別在函數(shù)y=log2x及函數(shù)y=x2+2x的圖象上.
(Ⅰ)求數(shù)列{an}、{bn}的通項(xiàng)公式;
(Ⅱ)令cn=an•bn,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在實(shí)數(shù)集R中定義一種運(yùn)算“*”,?a,b∈R,a*b為唯一確定的實(shí)數(shù),且具有性質(zhì):
(1)對任意a∈R,a*0=a;    
(2)對任意a,b∈R,a*b=ab+(a*0)+(b*0)
關(guān)于函數(shù)f(x)=(ex)*
1
ex
的性質(zhì),有如下說法:
①函數(shù)f(x)的最小值為3;
②函數(shù)f(x)為偶函數(shù);
③函數(shù)f(x)的單調(diào)遞增區(qū)間為(-∞,0]
其中正確說法的序號為( 。
A、①B、①②C、①②③D、②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給定橢圓C:
x2
a2
+
y2
b2
=1(a>b>0),稱圓心在原點(diǎn)O,半徑是
a2+b2
的圓為橢圓C的“準(zhǔn)圓”.已知橢圓C的一個(gè)焦點(diǎn)為F(
2
,0),其短軸的一個(gè)端點(diǎn)到點(diǎn)F的距離為
3

(1)求橢圓C和其“準(zhǔn)圓”的方程;
(2)若點(diǎn)A是橢圓C的“準(zhǔn)圓”與x軸正半軸的交點(diǎn),B,D是橢圓C上的兩相異點(diǎn),且BD⊥x軸,求
AB
AD
的取值范圍;
(3)證明:如果在橢圓C的“準(zhǔn)圓”上任取一點(diǎn)P,過點(diǎn)P作直線l1,l2,使得l1,l2與橢圓C都只有一個(gè)交點(diǎn),那么l1,l2互相垂直.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線C1
x2
a2
-8y2=1(a>0)的離心率是
2
,拋物線C2:y2=2px的準(zhǔn)線過C1的左焦點(diǎn).
(1)求拋物線C2的方程;
(2)若A(x1,y1),B(x2,y2),C(x3,4)是C2上三點(diǎn),且CA⊥CB,證明:直線AB過定點(diǎn),并求出這個(gè)定點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案