3.寫出下列命題p的否定¬p,并判斷命題¬p的真假:
(1)p:?x∈R,x2+x+1>0;
(2)$p:?{x_0},{y_0}∈R,\sqrt{{{({{x_0}-1})}^2}}+{({{y_0}+1})^2}=0$.

分析 (1)根據(jù)全稱命題的否定命題是特稱命題,可得¬p,進而判斷真假可得結論;
(2)根據(jù)特稱命題的否定命題是全稱命題,可得¬p,進而判斷真假可得結論;

解答 解:(1)$?p:?{x_0}∈R,x_0^2+{x_0}+1≤0$.
由于$x_0^2+{x_0}+1={({{x_0}+\frac{1}{2}})^2}+\frac{3}{4}≥\frac{3}{4}$,
所以?p為假命題.
(2)?p:$?x,y∈R,\sqrt{{{({x-1})}^2}}+{({y+1})^2}≠0$.
當x=-y=1時,$\sqrt{{{({x-1})}^2}}+{({y+1})^2}=0$,
所以?p為假命題.

點評 本題考查的知識點是命題的真假判斷與應用,命題的否定,全稱命題和特稱命題,難度基礎.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

13.設集合A={x|y=2x+3},B={(x,y)|y=4x+1},則A∩B=∅.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.與函數(shù)y=x-1-(x-2)0表示同一個函數(shù)的是(  )
A.y=x-2B.$y=\frac{{{x^2}-4}}{x+2}$C.$y=\frac{{{{({x-2})}^2}}}{x-2}$D.$y={({\frac{x-2}{{\sqrt{x-2}}}})^2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.已知直線l與雙曲線C:x2-y2=2的兩條漸近線分別交于A,B兩點,若AB的中點在該雙曲線上,O為坐標原點,則△AOB的面積為2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.下列命題為真命題的是( 。
A.函數(shù)$y=x+\frac{4}{x+1}$最小值為3B.函數(shù)$y=lgx+\frac{1}{lgx}$最小值為2
C.函數(shù)$y={2^x}+\frac{1}{{{2^x}+1}}$最小值為1D.函數(shù)$y={x^2}+\frac{1}{x^2}$最小值為2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.過橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的中心的弦為PQ,焦點為F1,F(xiàn)2,則△PQF1的最大面積是( 。
A.abB.bcC.caD.abc

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知函數(shù)f(x)的定義域為R,f′(x)為函數(shù)f(x)的導函數(shù),當x∈[0.+∞)時,2sinxcosx-f′(x)>0且?x∈R,f(-x)+f(x)+cos2x=1.則下列說法一定正確的是(  )
A.$\frac{1}{4}$-f(-$\frac{5π}{6}$)>$\frac{3}{4}$-f(-$\frac{2π}{3}$)B.$\frac{1}{4}$-f(-$\frac{5π}{6}$)>$\frac{3}{4}$-f(-$\frac{4π}{3}$)
C.$\frac{3}{4}$-f($\frac{π}{3}$)>$\frac{1}{2}$-f($\frac{3π}{4}$)D.$\frac{1}{2}$-f(-$\frac{3π}{4}$)>$\frac{3}{4}$-f($\frac{π}{3}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.下列命題中,真命題的個數(shù)有( 。
①?x∈R,x2-x+$\frac{1}{4}$≥0;
②?x>0,lnx+$\frac{1}{lnx}$≤2;
③“a>b”是“ac2>bc2”的充要條件;
④f(x)=3x-3-x是奇函數(shù).
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.若點M(x,y)為平面區(qū)域$\left\{\begin{array}{l}x+y≥2\\ x≤1\\ y≤2\end{array}\right.$上的一個動點,則x-y的取值范圍是(  )
A.[-2,0]B.[-1,0]C.[-1,-2]D.[0,2]

查看答案和解析>>

同步練習冊答案