【題目】數(shù)字不重復,且個位數(shù)字與千位數(shù)字之差的絕對值等于2的四位數(shù)的個數(shù)為________.
【答案】
【解析】
根據(jù)題意,先分析0到9十個數(shù)字中之差的絕對值等于2的情況,據(jù)此分2種情況討論,求出每種情況下的四位數(shù)數(shù)目,由加法原理計算可得答案.
根據(jù)題意,0到9十個數(shù)字中之差的絕對值等于2的情況有8種:0與2,1與3,2與4,3與5,4與6,5與7,6與8,7與9
分2種情況討論:
當個位與千位數(shù)字為0,2時,只能千位為2,個位為0,有A82=56種,
②當個位與千位數(shù)字為1與3,2與4,3與5,4與6,5與7,6與8,7與9時,先排千位數(shù)字,再排個位數(shù)字,最后排十位與百位,有7×A82×A22=784種,
共784+56=840;
故答案為:840.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在地上有同樣大小的 5 塊積木,一堆 2 個,一堆 3 個,要把積木一塊一塊的全部放到某個盒子里,每次 只能取出其中一堆最上面的一塊,則不同的取法有______種(用數(shù)字作答).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知橢圓:的焦距為2,且過點.
(1)求橢圓的方程;
(2)設橢圓的上頂點為,右焦點為,直線與橢圓交于,兩點,問是否存在直線,使得為的垂心,若存在,求出直線的方程:若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某城市為配合國家“一帶一路”戰(zhàn)略,發(fā)展城市旅游經(jīng)濟,擬在景觀河道的兩側,沿河岸直線與修建景觀(橋),如圖所示,河道為東西方向,現(xiàn)要在矩形區(qū)域內(nèi)沿直線將與接通.已知,,河道兩側的景觀道路修復費用為每米萬元,架設在河道上方的景觀橋部分的修建費用為每米萬元.
(1)若景觀橋長時,求橋與河道所成角的大;
(2)如何景觀橋的位置,使矩形區(qū)域內(nèi)的總修建費用最低?最低總造價是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓(),點為橢圓短軸的上端點,為橢圓上異于點的任一點,若點到點距離的最大值僅在點為短軸的另一端點時取到,則稱此橢圓為“圓橢圓”,已知.
(1)若,判斷橢圓是否為“圓橢圓”;
(2)若橢圓是“圓橢圓”,求的取值范圍;
(3)若橢圓是“圓橢圓”,且取最大值,為關于原點的對稱點,也異于點,直線、分別與軸交于、兩點,試問以線段為直徑的圓是否過定點?證明你的結論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)當時,求在處的切線方程;
(2)令,已知函數(shù)有兩個極值點,且,求實數(shù)的取值范圍;
(3)在(2)的條件下,若存在,使不等式對任意(取值范圍內(nèi)的值)恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列命題中,正確的個數(shù)是( )
①直線上有兩個點到平面的距離相等,則這條直線和這個平面平行;
②為異面直線,則過且與平行的平面有且僅有一個;
③直四棱柱是直平行六面體;
④兩相鄰側面所成角相等的棱錐是正棱錐.
A.0B.1C.2D.3
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com