【題目】下列命題中,正確的個數(shù)是(

①直線上有兩個點到平面的距離相等,則這條直線和這個平面平行;

為異面直線,則過且與平行的平面有且僅有一個;

③直四棱柱是直平行六面體;

④兩相鄰側(cè)面所成角相等的棱錐是正棱錐.

A.0B.1C.2D.3

【答案】B

【解析】

①可通過點分居平面兩側(cè)來進行否定;

②利用異面直線的性質(zhì)與線面平行的判定即可判斷出②正確;

③通過直四棱柱和直平行六面體定義來進行否定;

④通過把正方形折疊的方式可找到反例來進行否定.

①中,兩點可分別位于平面的兩側(cè),存在到平面距離相等的情況,此時直線和平面相交

①錯誤;

②中,作的平行線,且交于一點;則由可確定唯一的平面,此時,可知這樣的平面有且僅有一個,②正確;

③中,直四棱柱為底面為四邊形,側(cè)棱垂直于底面的四棱柱;直平行六面體是底面為平行四邊形,且側(cè)棱垂直于底面的四棱柱;③錯誤;

④中,若正方形一個頂點為,為兩邊的中點,如下圖所示:

將正方形沿三邊折疊為三棱錐,滿足兩相鄰側(cè)面所成角相等,但不是正三棱錐

④錯誤

故選:

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】數(shù)字不重復,且個位數(shù)字與千位數(shù)字之差的絕對值等于2的四位數(shù)的個數(shù)為________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的圖象關于直線對稱,則(

A.函數(shù)為奇函數(shù)

B.函數(shù)上單調(diào)遞增

C.,則的最小值為

D.函數(shù)的圖象向右平移個單位長度得到函數(shù)的圖象

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為滿足人們的閱讀需求,圖書館設立了無人值守的自助閱讀區(qū),提倡人們在閱讀后將圖書分類放回相應區(qū)域.現(xiàn)隨機抽取了某閱讀區(qū)500本圖書的分類歸還情況,數(shù)據(jù)統(tǒng)計如下(單位:本).

文學類專欄

科普類專欄

其他類專欄

文學類圖書

100

40

10

科普類圖書

30

200

30

其他圖書

20

10

60

1)根據(jù)統(tǒng)計數(shù)據(jù)估計文學類圖書分類正確的概率;

2)根據(jù)統(tǒng)計數(shù)據(jù)估計圖書分類錯誤的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)處的切線斜率為2.

(Ⅰ)求的單調(diào)區(qū)間和極值;

(Ⅱ)若上無解,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),且處的切線方程為

1)求的值;

2)設,若對任意的,,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知三棱錐的展開圖如圖二,其中四邊形為邊長等于的正方形,均為正三角形,在三棱錐中:

1)證明:平面平面;

2)若的中點,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】郴州某超市計劃按月訂購一種飲料,每天進貨量相同,進貨成本每瓶6元,售價每瓶8元,未售出的飲料降價處理,以每瓶3元的價格當天全部處理完.根據(jù)往年銷售經(jīng)驗,每天需求量與當天最高氣溫(單位:℃)有關.如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間,需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購計劃,統(tǒng)計了前三年六月份各天的最高氣溫數(shù)據(jù),得下面的頻數(shù)分布表:

最高氣溫

,

,

,

,

,

天數(shù)

2

16

36

25

7

4

以最高氣溫位于各區(qū)間的頻率估計最高氣溫位于該區(qū)間的概率.

1)求六月份這種飲料一天的需求量X(單位:瓶)的分布列;

2)設六月份一天銷售這種飲料的利潤為Y(單位:元),當六月份這種飲料一天的進貨量n(單位:瓶)為多少時,Y的數(shù)學期望達到最大值?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某條公共汽車線路收支差額與乘客量的函數(shù)關系如下圖所示(收支差額=車票收入-支出費用),由于目前本條線路虧損,公司有關人員提出了兩條建議:建議(1)不改變車票價格,減少支出費用;建議(2)不改變支出費用,提高車票價格.下面給出的四個圖形中,實線和虛線分別表示目前和建議后的函數(shù)關系,則(

A.①反映建議(2),③反映建議(1B.①反映建議(1),③反映建議(2

C.②反映建議(1),④反映建議(2D.④反映建議(1),②反映建議(2

查看答案和解析>>

同步練習冊答案