【題目】已知函數(shù)f(x)=ax3﹣bx2+cx+b﹣a(a>0).
(1)設(shè)c=0. ①若a=b,曲線y=f(x)在x=x0處的切線過(guò)點(diǎn)(1,0),求x0的值;
②若a>b,求f(x)在區(qū)間[0,1]上的最大值.
(2)設(shè)f(x)在x=x1 , x=x2兩處取得極值,求證:f(x1)=x1 , f(x2)=x2不同時(shí)成立.

【答案】
(1)解:當(dāng)c=0時(shí),f(x)=ax3﹣bx2+b﹣a.

①若a=b,則f(x)=ax3﹣ax2,

從而f'(x)=3ax2﹣2ax,

故曲線y=f(x)在x=x0處的切線方程為 =

將點(diǎn)(1,0)代入上式并整理得 =x0(1﹣x0)(3x0﹣2),

解得x0=0或x0=1.

②若a>b,則令f'(x)=3ax2﹣2bx=0,解得x=0或

(。┤鬮≤0,則當(dāng)x∈[0,1]時(shí),f'(x)≥0,

∴f(x)為區(qū)間[0,1]上的增函數(shù),

∴f(x)的最大值為f(1)=0.

( ii)若b>0,列表:

x

0

(0,

,1)

1

f′(x)

0

0

+

f(x)

b﹣a<0

減函數(shù)

極小值

增函數(shù)

0

所以f(x)的最大值為f(1)=0.

綜上,f(x)的最大值為0


(2)解:假設(shè)存在實(shí)數(shù)a,b,c,使得f(x1)=x1與f(x2)=x2同時(shí)成立.

不妨設(shè)x1<x2,則f(x1)<f(x2).

因?yàn)閤=x1,x=x2為f(x)的兩個(gè)極值點(diǎn),

所以f'(x)=3ax2﹣2bx+c=3a(x﹣x1)(x﹣x2).

因?yàn)閍>0,所以當(dāng)x∈[x1,x2]時(shí),f'(x)≤0,

故f(x)為區(qū)間[x1,x2]上的減函數(shù),

從而f(x1)>f(x2),這與f(x1)<f(x2)矛盾,

故假設(shè)不成立.

既不存在實(shí)數(shù)a,b,c,使得f(x1)=x1,f(x2)=x2同時(shí)成立


【解析】(1)①計(jì)算f′(1),得出切線方程,代入點(diǎn)(1,0)列方程解出x0;②求出f(x)的極值點(diǎn),判斷兩極值點(diǎn)的大小及與區(qū)間[0,1]的關(guān)系,從而得出f(x)在[0,1]上的單調(diào)性,得出最大值;(2)使用反證法證明.
【考點(diǎn)精析】本題主要考查了函數(shù)的極值與導(dǎo)數(shù)和函數(shù)的最大(小)值與導(dǎo)數(shù)的相關(guān)知識(shí)點(diǎn),需要掌握求函數(shù)的極值的方法是:(1)如果在附近的左側(cè),右側(cè),那么是極大值(2)如果在附近的左側(cè),右側(cè),那么是極小值;求函數(shù)上的最大值與最小值的步驟:(1)求函數(shù)內(nèi)的極值;(2)將函數(shù)的各極值與端點(diǎn)處的函數(shù)值,比較,其中最大的是一個(gè)最大值,最小的是最小值才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列有關(guān)命題的說(shuō)法正確的是(
A.命題“若xy=0,則x=0”的否命題為:“若xy=0,則x≠0”
B.“若x+y=0,則x,y互為相反數(shù)”的逆命題為真命題
C.命題“x∈R,使得2x2﹣1<0”的否定是:“x∈R,均有2x2﹣1<0”
D.命題“若cosx=cosy,則x=y”的逆否命題為真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且(c﹣2a) =c
(1)求B的大;
(2)已知f(x)=cosx(asinx﹣2cosx)+1,若對(duì)任意的x∈R,都有f(x)≤f(B),求函數(shù)f(x)的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=2x﹣cosx,{an}是公差為 的等差數(shù)列,f(a1)+f(a2)+…+f(a5)=5π,則[f(a3)]2﹣a1a5=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知點(diǎn)A(0,0),B(4,3),若A,B,C三點(diǎn)按順時(shí)針?lè)较蚺帕袠?gòu)成等邊三角形ABC,且直線BC與x軸交于點(diǎn)D.
(1)求cos∠CAD的值;
(2)求點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨機(jī)抽取某中學(xué)甲、乙兩班各10名同學(xué),測(cè)量他們的身高(單位:cm),獲得身高數(shù)據(jù)的莖葉圖如圖7.

(1)根據(jù)莖葉圖判斷哪個(gè)班的平均身高較高;

(2)計(jì)算甲班的樣本方差;

(3)現(xiàn)從乙班這10名同學(xué)中隨機(jī)抽取兩名身高不低于173cm的同學(xué),求身高為176cm的同學(xué)被抽中的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}的各項(xiàng)均為正整數(shù),其前n項(xiàng)和為Sn , an+1= ,若S3=10,則S180=(
A.600或900
B.900或560
C.900
D.600

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù) 的圖象向左平移 個(gè)單位,得到函數(shù)g(x)的圖象,則下列關(guān)于g(x)敘述正確的是(
A.g(x)的最小正周期為2π
B.g(x)在 內(nèi)單調(diào)遞增
C.g(x)的圖象關(guān)于 對(duì)稱
D.g(x)的圖象關(guān)于 對(duì)稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】執(zhí)行如圖的程序框圖,則輸出的s=(  )

A.
B.-
C.
D.-

查看答案和解析>>

同步練習(xí)冊(cè)答案