【題目】選修4-5:不等式選講

設(shè)函數(shù)

(1)證明:;

(2)若不等式的解集是非空集,求的范圍.

【答案】1)見(jiàn)解析;(2.

【解析】試題分析:(1)直接計(jì)算,由絕對(duì)值不等式的性質(zhì)及基本不等式證之即可;

2,分區(qū)間討論去絕對(duì)值符號(hào)分別解不等式即可.

試題解析: (1)證明:函數(shù)fx=|x﹣a|,a0,

fx+f=|x﹣a|+|﹣﹣a|=|x﹣a|+|+a|≥|x﹣a++a|

=|x+|=|x|+≥2=2

2fx+f2x=|x﹣a|+|2x﹣a|,a0

當(dāng)x≤a時(shí),fx=a﹣x+a﹣2x=2a﹣3x,則fx≥﹣a;

當(dāng)ax時(shí),fx=x﹣a+a﹣2x=﹣x,則fx)<﹣a;

當(dāng)x時(shí),fx=x﹣a+2x﹣a=3x﹣2a,則fx≥﹣.則fx)的值域?yàn)?/span>[﹣,+∞.

不等式fx+f2x)<的解集非空,即為,解得,a﹣1,由于a0,

a的取值范圍是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地區(qū)發(fā)生里氏8.0級(jí)特大地震.地震專(zhuān)家對(duì)發(fā)生的余震進(jìn)行了監(jiān)測(cè),記錄的部分?jǐn)?shù)據(jù)如下表:

強(qiáng)度(J)

1.6×1019

3.2×1019

4.5×1019

6.4×1019

震級(jí)(里氏)

5.0

5.2

5.3

5.4

注:地震強(qiáng)度是指地震時(shí)釋放的能量.

地震強(qiáng)度(x)和震級(jí)(y)的模擬函數(shù)關(guān)系可以選用y=alg x+b(其中a,b為常數(shù)).利用散點(diǎn)圖(如圖)可知a的值等于________.(取lg 2=0.3進(jìn)行計(jì)算)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】【2014天津,文19】已知函數(shù)

(1) 的單調(diào)區(qū)間和極值;

(2)若對(duì)于任意的,都存在,使得,求的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四棱錐中,,,都是邊長(zhǎng)為2的等邊三角形,設(shè)在底面的射影為.

(1)求證:中點(diǎn);

(2)證明:;

(3)求點(diǎn)到面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知某中學(xué)高三文科班學(xué)生共有800人參加了數(shù)學(xué)與地理的水平測(cè)試,現(xiàn)從中隨機(jī)抽取100人的數(shù)學(xué)與地理的水平測(cè)試成績(jī)?nèi)缦卤恚?/span>

成績(jī)分為優(yōu)秀、良好、及格三個(gè)等級(jí);橫向,縱向分別表示地理成績(jī)與數(shù)學(xué)成績(jī),例如:表中數(shù)學(xué)成績(jī)?yōu)榱己玫墓灿?/span>.

)若在該樣本中,數(shù)學(xué)成績(jī)優(yōu)秀率是30%,求的值;

)已知,求數(shù)學(xué)成績(jī)?yōu)閮?yōu)秀的人數(shù)比及格的人數(shù)少的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,設(shè)ABC的頂點(diǎn)分別為,圓M是ABC的外接圓,直線的方程是,

(1)求圓M的方程;

(2)證明:直線與圓M相交;

(3)若直線被圓M截得的弦長(zhǎng)為3,求直線的方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2016·桂林高二檢測(cè))如圖所示,在四邊形ABCD,AB=AD=CD=1,BD=,BDCD,將四邊形ABCD沿對(duì)角線BD折成四面體A′-BCD,使平面A′BD⊥平面BCD,則下列結(jié)論正確的是________.

(1)A′C⊥BD.(2)∠BA′C=90°.

(3)CA′與平面A′BD所成的角為30°.

(4)四面體A′-BCD的體積為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】經(jīng)過(guò)原點(diǎn)的直線與橢圓交于兩點(diǎn),點(diǎn)為橢圓上不同于的一點(diǎn),直線的斜率均存在,且直線的斜率之積為.

(1)求橢圓的離心率;

(2)設(shè)分別為橢圓的左、右焦點(diǎn),斜率為的直線經(jīng)過(guò)橢圓的右焦點(diǎn),且與橢圓交于兩點(diǎn).若點(diǎn)在以為直徑的圓內(nèi)部,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)對(duì)一切實(shí)數(shù)都有 成立,且.

(1)求的值;

(2)求的解析式;

(3)已知,設(shè):當(dāng)時(shí),不等式 恒成立;Q:當(dāng)時(shí),是單調(diào)函數(shù)。如果滿足成立的的集合記為,滿足Q成立的的集合記為,求A∩(CRB)(為全集).

查看答案和解析>>

同步練習(xí)冊(cè)答案