某大學(xué)志愿者協(xié)會(huì)有6名男同學(xué),4名女同學(xué).在這10名同學(xué)中,3名同學(xué)來自數(shù)學(xué)學(xué)院,其余7名同學(xué)來自物理、化學(xué)等其他互不相同的七個(gè)學(xué)院.現(xiàn)從這10名同學(xué)中隨機(jī)選取3名同學(xué),到希望小學(xué)進(jìn)行支教活動(dòng)(每位同學(xué)被選到的可能性相同).
(1)求選出的3名同學(xué)是來自互不相同學(xué)院的概率;
(2)設(shè)為選出的3名同學(xué)中女同學(xué)的人數(shù),求隨機(jī)變量的分布列和數(shù)學(xué)期望.
(1);(2)隨機(jī)變量的分布列為

0
1
2
3





 
數(shù)學(xué)期望

試題分析:(1)由已知可知選出的3名同學(xué)可能有1名來自數(shù)學(xué)學(xué)院,其余2名同學(xué)來自物理、化學(xué)等其他互不相同的七個(gè)學(xué)院,或者3名同學(xué)都來自物理、化學(xué)等其他互不相同的七個(gè)學(xué)院,由互斥事件的概率加法公式即可求得“選出的3名同學(xué)是來自互不相同學(xué)院的概率”;(2)首先,隨機(jī)變量的所有可能值為0,1,2,3.而隨機(jī)變量服從超幾何分布,可先分別求出的值,最后利用公式即可求得隨機(jī)變量的分布列和數(shù)學(xué)期望.
(1)設(shè)“選出的3名同學(xué)來自互不相同的學(xué)院”為事件,則,∴選出的3名同學(xué)來自互不相同學(xué)院的概率為
(2)隨機(jī)變量的所有可能值為0,1,2,3.
隨機(jī)變量的分布列為

0
1
2
3





 
隨機(jī)變量的數(shù)學(xué)期望
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

實(shí)驗(yàn)北校舉行運(yùn)動(dòng)會(huì),組委會(huì)招墓了16名男志愿者和14名女志愿者,調(diào)查發(fā)現(xiàn),男、女志愿者中分別有10 人和6人喜愛運(yùn)動(dòng),其余不喜愛.
(1)根據(jù)以上數(shù)據(jù)完成以下列聯(lián)表:

(2)根據(jù)列聯(lián)表的獨(dú)立性檢驗(yàn),有多大的把握認(rèn)為性別與喜愛運(yùn)動(dòng)有關(guān)?
(3)從不喜愛運(yùn)動(dòng)的女志愿者中和喜愛運(yùn)動(dòng)的女志愿者中各選1人,求其中不喜愛運(yùn)動(dòng)的女生甲及喜愛運(yùn)動(dòng)的女生乙至少有一人被選取的概率.
參考公式 :(其中
 




是否有關(guān)聯(lián)
沒有關(guān)聯(lián)
90%
95%
99%
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在一塊耕地上種植一種作物,每季種植成本為1000元,此作物的市場(chǎng)價(jià)格和這塊地上的產(chǎn)量均具有隨機(jī)性,且互不影響,其具體情況如下表:

(1)設(shè)表示在這塊地上種植1季此作物的利潤(rùn),求的分布列;
(2)若在這塊地上連續(xù)3季種植此作物,求這3季中至少有2季的利潤(rùn)不少于2000元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

袋中裝有大小和形狀相同的小球若干個(gè)黑球和白球,且黑球和白球的個(gè)數(shù)比為4:3,從中任取2個(gè)球都是白球的概率為現(xiàn)不放回從袋中摸取球,每次摸一球,直到取到白球時(shí)即終止,每個(gè)球在每一次被取出的機(jī)會(huì)是等可能的,用表示取球終止時(shí)所需要的取球次數(shù).
(1)求袋中原有白球、黑球的個(gè)數(shù);
(2)求隨機(jī)變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

5張卡片上分別寫有數(shù)字1,2,3,4,5,從這5張卡片中隨機(jī)抽取2張,則取出2張卡片上數(shù)字之和為偶數(shù)的概率為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

一個(gè)口袋中裝有大小相同的2個(gè)紅球,3個(gè)黑球和4個(gè)白球,從口袋中一次摸出一個(gè)球,摸出的球不再放回.
(1)連續(xù)摸球2次,求第一次摸出黑球,第二次摸出白球的概率;
(2)如果摸出紅球,則停止摸球,求摸球次數(shù)不超過3次的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

一大學(xué)生畢業(yè)找工作,在面試考核中,他共有三次答題機(jī)會(huì)(每次問題不同).假設(shè)他能正確回答每題的概率均為,規(guī)定有兩次回答正確即通過面試,那么該生“通過面試”的概率為        .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

節(jié)日期間,高速公路車輛較多,某調(diào)查公司在一服務(wù)區(qū)從七座以下小型汽車中按進(jìn)服務(wù)區(qū)的順序,隨機(jī)抽取第一輛汽車后,每間隔50輛就抽取一輛的抽樣方法抽取40名駕駛員進(jìn)行詢問調(diào)查,將他們?cè)谀扯胃咚俟返能囁伲?img src="http://thumb.1010pic.com/pic2/upload/papers/20140824/20140824045550969550.png" style="vertical-align:middle;" />)分成六段,,,后得到如下圖的頻率分布直方圖.
(1)請(qǐng)直接回答這種抽樣方法是什么抽樣方法?并估計(jì)出這40輛車速的中位數(shù);
(2)設(shè)車速在的車輛為, ,為車速在上的頻數(shù)),車速在的車輛為,, ,為車速在上的頻數(shù)),從車速在的車輛中任意抽取輛共有幾種情況?請(qǐng)列舉出所有的情況,并求抽取的輛車的車速都在上的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

隨機(jī)變量ξ的分布列如右圖,其中a,b,成等差數(shù)列,
ξ
-1
0
1
P
a
b

 
ξ
-1
0
1
P
a
b

       .;
a
b

查看答案和解析>>

同步練習(xí)冊(cè)答案