13.在等差數(shù)列{an}中,a2=5,a1+a3+a4=19.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若數(shù)列{bn}前n項和為Sn,且Sn+$\frac{{a}_{n}-1}{{2}^{n}}$=λ(λ為常數(shù)),令cn=bn+1(n∈N*).求數(shù)列{cn}的前n項和Tn

分析 (Ⅰ)設等差數(shù)列{an}的公差為d,運用等差數(shù)列的通項公式,列方程解方程可得首項和公差,即可得到所求通項公式;
(Ⅱ)求得Sn=λ-n•($\frac{1}{2}$)n-1,當n≥2時,bn=Sn-Sn-1,求得cn=bn+1=(n-1)•($\frac{1}{2}$)n,再由數(shù)列的求和方法:錯位相減法,結(jié)合等比數(shù)列的求和公式,化簡整理可得所求和.

解答 解:(Ⅰ)等差數(shù)列{an}中,a2=5,a1+a3+a4=19,
設等差數(shù)列{an}的公差為d,
可得a1+d=5,3a1+5d=19,
解得a1=3,d=2,
則an=a1+(n-1)d=3+2(n-1)=2n+1;
(Ⅱ)Sn+$\frac{{a}_{n}-1}{{2}^{n}}$=λ(λ為常數(shù)),
可得Sn+$\frac{2n}{{2}^{n}}$=λ,
即有Sn=λ-n•($\frac{1}{2}$)n-1
當n≥2時,bn=Sn-Sn-1=λ-n•($\frac{1}{2}$)n-1-λ+(n-1)•($\frac{1}{2}$)n-2=(n-2)•($\frac{1}{2}$)n-1
cn=bn+1=(n-1)•($\frac{1}{2}$)n,
數(shù)列{cn}的前n項和Tn=0•($\frac{1}{2}$)+1•($\frac{1}{2}$)2+2•($\frac{1}{2}$)3+…+(n-1)•($\frac{1}{2}$)n,
$\frac{1}{2}$Tn=0•($\frac{1}{2}$)2+1•($\frac{1}{2}$)3+2•($\frac{1}{2}$)4+…+(n-1)•($\frac{1}{2}$)n+1
兩式相減可得,$\frac{1}{2}$Tn=0+($\frac{1}{2}$)2+($\frac{1}{2}$)3+($\frac{1}{2}$)4+…+($\frac{1}{2}$)n-(n-1)•($\frac{1}{2}$)n+1
=$\frac{\frac{1}{4}(1-\frac{1}{{2}^{n-1}})}{1-\frac{1}{2}}$-(n-1)•($\frac{1}{2}$)n+1,
可得數(shù)列{cn}的前n項和Tn=1-(n+1)•($\frac{1}{2}$)n

點評 本題考查等差數(shù)列的通項公式的求法,注意運用方程思想,考查數(shù)列的求和方法:錯位相減法,考查化簡整理的運算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

3.命題“?x∈N,x2>1”的否定為?x0∈N,x02≤1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.如圖,在直三棱柱ABC-A1B1C1中,AC⊥BC,A1B與AB1交于點D,A1C與AC1交于點E.
求證:(1)DE∥平面B1BCC1;
(2)平面A1BC⊥平面A1ACC1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.設f(x)=|lnx|,a,b為實數(shù),且0<a<b.
(1)求方程f(x)=1的解;     
(2)若a,b滿足f(a)=f(b),求證:①a•b=1;②$\frac{a+b}{2}>1$;        
(3)在(2)的條件下,求證:由關(guān)系式$f(b)=2f(\frac{a+b}{2})$所得到的關(guān)于b的方程h(b)=0,存在b0∈(3,4),使h(b0)=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.設向量$\overrightarrow{a}$與$\overrightarrow$的夾角為θ,若$\overrightarrow{a}$=(3,-1),$\overrightarrow$-$\overrightarrow{a}$=(-1,1),則cosθ=$\frac{3\sqrt{10}}{10}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.求下列函數(shù)的導數(shù)
(1)y=x2sinx  
(2)y=tanx.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知拋物線C的頂點為坐標原點,焦點F(1,0),其準線與x軸的交點為K,過點K的直線l與C交于A,B兩點,點A關(guān)于x軸的對稱點為D.
(1)證明:點F在直線BD上;
(2)設$\overrightarrow{FA}$•$\overrightarrow{FB}$=$\frac{8}{9}$,求△BDK內(nèi)切圓M的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知關(guān)于x的方程e2x+ex-a=0有實數(shù)解,則實數(shù)a的取值范圍是( 。
A.[0,+∞)B.(0,+∞)C.(1,2)D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知函數(shù)f(x)=ax(a>0,a≠1)的反函數(shù)的圖象經(jīng)過點($\frac{\sqrt{2}}{2}$,$\frac{1}{2}$).若函數(shù)g(x)的定義域為R,當x∈[-2,2]時,有g(shù)(x)=f(x),且函數(shù)g(x+2)為偶函數(shù),則下列結(jié)論正確的是(  )
A.g(π)<g(3)<g($\sqrt{2}$)B.g(π)<g($\sqrt{2}$)<g(3)C.g($\sqrt{2}$)<g(3)<g(π)D.g($\sqrt{2}$)<g(π)<g(3)

查看答案和解析>>

同步練習冊答案