分析 (Ⅰ)是“5階可重復(fù)數(shù)列”.
(Ⅱ)因?yàn)閿?shù)列{an}的每一項(xiàng)只可以是0或1,所以連續(xù)3項(xiàng)共有23=8種不同的情形.分類討論:若m=11,則數(shù)列{an}中有9組連續(xù)3項(xiàng),則這其中至少有兩組按次序?qū)?yīng)相等,即項(xiàng)數(shù)為11的數(shù)列{an}一定是“3階可重復(fù)數(shù)列”;則3≤m<10時,均存在不是“3階可重復(fù)數(shù)列”的數(shù)列{an}.
(III)由于數(shù)列{an}在其最后一項(xiàng)am后再添加一項(xiàng)0或1,均可使新數(shù)列是“5階可重復(fù)數(shù)列”,即在數(shù)列{an}的末項(xiàng)am后再添加一項(xiàng)0或1,則存在i≠j,使得ai,ai+1,ai+2,ai+3,ai+4與am-3,am-2,am-1,am,0按次序?qū)?yīng)相等,或aj,aj+1,aj+2,aj+3,aj+4與am-3,am-2,am-1,am,1按次序?qū)?yīng)相等,經(jīng)過分析可得:am=a4.
解答 解:(Ⅰ)是“5階可重復(fù)數(shù)列”,10101. ….(3分)
(Ⅱ)因?yàn)閿?shù)列{an}的每一項(xiàng)只可以是0或1,所以連續(xù)3項(xiàng)共有23=8種不同的情形.
若m=11,則數(shù)列{an}中有9組連續(xù)3項(xiàng),則這其中至少有兩組按次序?qū)?yīng)相等,即項(xiàng)數(shù)為11的數(shù)列{an}一定是“3階可重復(fù)數(shù)列”;若m=10,數(shù)列0,0,1,0,1,1,1,0,0,0不是“3階可重復(fù)數(shù)列”;則3≤m<10時,均存在不是“3階可重復(fù)數(shù)列”的數(shù)列{an}.所以,要使數(shù)列{an}一定是“3階可重復(fù)數(shù)列”,則m的最小值是11.….(8分)
(III)由于數(shù)列{an}在其最后一項(xiàng)am后再添加一項(xiàng)0或1,均可使新數(shù)列是“5階可重復(fù)數(shù)列”,即在數(shù)列{an}的末項(xiàng)am后再添加一項(xiàng)0或1,則存在i≠j,
使得ai,ai+1,ai+2,ai+3,ai+4與am-3,am-2,am-1,am,0按次序?qū)?yīng)相等,或aj,aj+1,aj+2,aj+3,aj+4與am-3,am-2,am-1,am,1按次序?qū)?yīng)相等,
如果a1,a2,a3,a4與am-3,am-2,am-1,am不能按次序?qū)?yīng)相等,那么必有2≤i,j≤m-4,i≠j,使得ai,ai+1,ai+2,ai+3、aj,aj+1,aj+2,aj+3與am-3,am-2,am-1,am按次序?qū)?yīng)相等.
此時考慮ai-1,aj-1和am-4,其中必有兩個相同,這就導(dǎo)致數(shù)列{an}中有兩個連續(xù)的五項(xiàng)恰按次序?qū)?yīng)相等,從而數(shù)列{an}是“5階可重復(fù)數(shù)列”,這和題設(shè)中數(shù)列{an}不是“5階可重復(fù)數(shù)列”矛盾!所以a1,a2,a3,a4與am-3,am-2,am-1,am按次序?qū)?yīng)相等,從而am=a4=1.….(14分)
點(diǎn)評 本題考查了新定義、數(shù)列的通項(xiàng)公式、分類討論方法、反證法,考查了推理能力與計算能力,屬于難題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ${a_n}={({\frac{1}{2}})^n},{b_n}={({\frac{2}{3}})^n}$ | B. | ${a_n}={({\frac{1}{3}})^n},{b_n}=\frac{n}{{{n^2}+1}}$ | ||
C. | ${a_n}=\frac{n-1}{n},{b_n}=1+{({\frac{1}{3}})^n}$ | D. | ${a_n}=\frac{n+3}{n+2},{b_n}=\frac{n+2}{n+1}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{2}$ | B. | $\frac{9}{4}$ | C. | 2 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{2}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{\sqrt{6}}}{3}$ | B. | 2 | C. | $\frac{2}{3}$ | D. | $\frac{{\sqrt{6}}}{3}$或2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{6}}{3}$ | B. | $\frac{\sqrt{3}}{3}$ | C. | $\frac{\sqrt{2}}{3}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a<b<c | B. | a<c<b | C. | c<a<b | D. | c<b<a |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com