精英家教網 > 高中數學 > 題目詳情

【題目】已知圓錐曲線 E:
(I)求曲線 E的離心率及標準方程;
(II)設 M(x0 , y0)是曲線 E上的任意一點,過原點作⊙M:(x﹣x02+(y﹣y02=8的兩條切線,分別交曲線 E于點 P、Q.
①若直線OP,OQ的斜率存在分別為k1 , k2 , 求證:k1k2=﹣ ;
②試問OP2+OQ2是否為定值.若是求出這個定值,若不是請說明理由.

【答案】解:(I)由橢圓定義可知,曲線E是以 為焦點,長軸長為 的橢圓,
設橢圓的半長軸長、半短軸長、半焦距分別為a、b、c.
,則 ,
∴橢圓的離心率 ,E的標準方程為
(II)①證明:若過原點與⊙M相切的直線斜率存在設為k,
則切線方程為y=kx,∴ ,
整理得
由題設可知k1 , k2是以上關于k的一元二次方程的兩個實根,
,即
②設 P(x1 , y1),Q(x2 , y2).
當直線 O P,OQ的斜率存在時,
由①易得 , ,
= = = =
當直線 O P或 OQ的斜率不存在時,圓 M與y軸相切,且圓 M也與x軸相切 P,Q是橢圓 E的兩個頂點,∴O P2+OQ2=a2+b2=36.
綜上所述:O P2+OQ2為定值36.
【解析】(I)由橢圓定義可知,曲線E是以 為焦點,長軸長為 的橢圓,即可得出.(II)①若過原點與⊙M相切的直線斜率存在設為k,則切線方程為y=kx,可得 ,整理得 .由題設可知k1 , k2是以上關于k的一元二次方程的兩個實根,利用根與系數的關系即可得出.②設 P(x1 , y1),Q(x2 , y2).當直線 O P,OQ的斜率存在時,由①易得 , ,利用兩點之間的距離、根與系數的關系即可得出.當直線 O P,OQ的斜率不存在時直接驗證即可得出.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】設函數f(x)=e|lnx|(e為自然對數的底數).若x1≠x2且f(x1)=f(x2),則下列結論一定不成立的是(
A.x2f(x1)>1
B.x2f(x1)=1
C.x2f(x1)<1
D.x2f(x1)<x1f(x2

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列{an}的前n項和Sn=﹣an﹣( n1+2(n∈N*),數列{bn}滿足bn=2nan
(Ⅰ)求證數列{bn}是等差數列,并求數列{an}的通項公式;
(Ⅱ)設cn=log2 ,數列{ }的前n項和為Tn , 求滿足Tn (n∈N*)的n的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的右焦點為且橢圓上一點到其兩焦點,的距離之和為

1求橢圓的標準方程

2設直線與橢圓交于不同兩點,,若點滿足,的值

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了解學生寒假閱讀名著的情況,一名教師對某班級的所有學生進行了調查,調查結果如下表:

本數
人數
性別

0

1

2

3

4

5

男生

0

1

4

3

2

2

女生

0

0

1

3

3

1

(I)從這班學生中任選一名男生,一名女生,求這兩名學生閱讀名著本數之和為4的概率;
(II)若從閱讀名著不少于4本的學生中任選4人,設選到的男學生人數為 X,求隨機變量 X的分布列和數學期望;
(III)試判斷男學生閱讀名著本數的方差 與女學生閱讀名著本數的方差 的大。ㄖ恍鑼懗鼋Y論).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】、為曲線上兩點,的橫坐標之和為

(1)求直線的斜率;

(2)為曲線上一點,處的切線與直線平行,且,求直線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數處有極大值,則的值為( )

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

1)當時,求曲線在點處的切線方程;

2)當時,討論的單調性.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)的定義域為[﹣1,5],部分對應值如表,f(x)的導函數y=f′(x)的圖象如圖所示,

x

﹣1

0

2

4

5

f(x)

1

2

1.5

2

1

下列關于函數f(x)的命題:
①函數f(x)的值域為[1,2];
②如果當x∈[﹣1,t]時,f(x)的最大值為2,那么t的最大值為4;
③函數f(x)在[0,2]上是減函數;
④當1<a<2時,函數y=f(x)﹣a最多有4個零點.
其中正確命題的序號是

查看答案和解析>>

同步練習冊答案