已知函數(shù)為小于的常數(shù)).
(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(2)存在使不等式成立,求實數(shù)的取值范圍.
(1)的單調(diào)遞增區(qū)間為,遞減區(qū)間為;(2).

試題分析:先求出導(dǎo)函數(shù),(1)將代入得到,進而由可求出函數(shù)的單調(diào)增區(qū)間與減區(qū)間;(2)先將存在使不等式成立等價轉(zhuǎn)化成;然后由,得,進而對、、三種情況,分別求出函數(shù)上的最大值, 進而求解不等式得出的取值范圍結(jié)合各自的條件求得各種情況下的取值范圍,最后這三種情況的的取值范圍的并集即可.

(1) 當(dāng)時,
所以由,由
所以的單調(diào)遞增區(qū)間為,遞減區(qū)間為
(2) ,令,得
①當(dāng)時,即時,上單調(diào)遞增
,解得,所以滿足題意
②當(dāng)時,即
上單調(diào)遞增,上單調(diào)遞減
,解得,所以當(dāng)時滿足題意
③當(dāng)時,即時,上單調(diào)遞減
,解得,所以時滿足題意
綜上所述.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

記函數(shù)fn(x)=a·xn-1(a∈R,n∈N*)的導(dǎo)函數(shù)為f′n(x),已知f′3(2)=12.
(1)求a的值;
(2)設(shè)函數(shù)gn(x)=fn(x)-n2ln x,試問:是否存在正整數(shù)n使得函數(shù)gn(x)有且只有一個零點?若存在,請求出所有n的值;若不存在,請說明理由;
(3)若實數(shù)x0和m(m>0且m≠1)滿足,試比較x0與m的大小,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),.
(1)求函數(shù)的最小值;
(2)若,證明:當(dāng)時,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù).
(1)當(dāng)時,討論函數(shù)的單調(diào)性;
(2)當(dāng)時,在函數(shù)圖象上取不同兩點A、B,設(shè)線段AB的中點為,試探究函數(shù)在Q點處的切線與直線AB的位置關(guān)系?
(3)試判斷當(dāng)圖象是否存在不同的兩點A、B具有(2)問中所得出的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),函數(shù)的導(dǎo)函數(shù),且,其中為自然對數(shù)的底數(shù).
(1)求的極值;
(2)若,使得不等式成立,試求實數(shù)的取值范圍;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

[2014·山東濟寧]已知f(x)=x2+2xf′(2014)+2014lnx,則f′(2014)=(  )
A.2015B.-2015C.2014D.-2014

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)f(x)的定義域為R,f(-2)=2,對任意x∈R,xf′(x)>-f(x),則xf(x)<-4的解集為(   )
A.(-2,2)B.(-2,+∞)C.(-∞,-2)D.(-∞,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若曲線上點處的切線平行于直線,則點的坐標是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè),若,則(  )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案