已知函數(shù)為小于的常數(shù)).
(1)當時,求函數(shù)的單調區(qū)間;
(2)存在使不等式成立,求實數(shù)的取值范圍.
(1)的單調遞增區(qū)間為,遞減區(qū)間為;(2).

試題分析:先求出導函數(shù),(1)將代入得到,進而由可求出函數(shù)的單調增區(qū)間與減區(qū)間;(2)先將存在使不等式成立等價轉化成;然后由,得,進而對、、三種情況,分別求出函數(shù)上的最大值, 進而求解不等式得出的取值范圍結合各自的條件求得各種情況下的取值范圍,最后這三種情況的的取值范圍的并集即可.

(1) 當時,
所以由,由
所以的單調遞增區(qū)間為,遞減區(qū)間為
(2) ,令,得
①當時,即時,上單調遞增
,解得,所以滿足題意
②當時,即
上單調遞增,上單調遞減
,解得,所以當時滿足題意
③當時,即時,上單調遞減
,解得,所以時滿足題意
綜上所述.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

記函數(shù)fn(x)=a·xn-1(a∈R,n∈N*)的導函數(shù)為f′n(x),已知f′3(2)=12.
(1)求a的值;
(2)設函數(shù)gn(x)=fn(x)-n2ln x,試問:是否存在正整數(shù)n使得函數(shù)gn(x)有且只有一個零點?若存在,請求出所有n的值;若不存在,請說明理由;
(3)若實數(shù)x0和m(m>0且m≠1)滿足,試比較x0與m的大小,并加以證明.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù),.
(1)求函數(shù)的最小值;
(2)若,證明:當時,.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù).
(1)當時,討論函數(shù)的單調性;
(2)當時,在函數(shù)圖象上取不同兩點A、B,設線段AB的中點為,試探究函數(shù)在Q點處的切線與直線AB的位置關系?
(3)試判斷當圖象是否存在不同的兩點A、B具有(2)問中所得出的結論.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù),函數(shù)的導函數(shù),且,其中為自然對數(shù)的底數(shù).
(1)求的極值;
(2)若,使得不等式成立,試求實數(shù)的取值范圍;

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

[2014·山東濟寧]已知f(x)=x2+2xf′(2014)+2014lnx,則f′(2014)=(  )
A.2015B.-2015C.2014D.-2014

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

函數(shù)f(x)的定義域為R,f(-2)=2,對任意x∈R,xf′(x)>-f(x),則xf(x)<-4的解集為(   )
A.(-2,2)B.(-2,+∞)C.(-∞,-2)D.(-∞,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若曲線上點處的切線平行于直線,則點的坐標是________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

,若,則(  )
A.B.C.D.

查看答案和解析>>

同步練習冊答案