記函數(shù)fn(x)=a·xn-1(a∈R,n∈N*)的導(dǎo)函數(shù)為f′n(x),已知f′3(2)=12.
(1)求a的值;
(2)設(shè)函數(shù)gn(x)=fn(x)-n2ln x,試問:是否存在正整數(shù)n使得函數(shù)gn(x)有且只有一個(gè)零點(diǎn)?若存在,請(qǐng)求出所有n的值;若不存在,請(qǐng)說明理由;
(3)若實(shí)數(shù)x0和m(m>0且m≠1)滿足,試比較x0與m的大小,并加以證明.
(1)a=1   (2)存在n=1,使得函數(shù)gn(x)有且只有一個(gè)零點(diǎn).
(3)見解析
解:(1)f3′(x)=3ax2,由f3′(2)=12得a=1.
(2)gn(x)=xn-n2ln x-1,
g′n(x)=nxn-1.
因?yàn)閤>0,令gn′(x)=0得x=
當(dāng)x>時(shí),gn′(x)>0,gn(x)是增函數(shù);
當(dāng)0<x<時(shí),gn′(x)<0,gn(x)是減函數(shù).
所以當(dāng)x=時(shí),gn(x)有極小值,也是最小值,
gn()=n-nln n-1.
當(dāng)x→0時(shí),gn(x)→+∞;
當(dāng)x→+∞時(shí),gn(x)→+∞.
當(dāng)n≥3時(shí),gn()=n(1-ln n)-1<0,函數(shù)gn(x)有兩個(gè)零點(diǎn);
當(dāng)n=2時(shí),gn()=-2ln 2+1<0,函數(shù)gn(x)有兩個(gè)零點(diǎn);
當(dāng)n=1時(shí),gn()=0,函數(shù)gn(x)有且只有一個(gè)零點(diǎn).
綜上所述,存在n=1,使得函數(shù)gn(x)有且只有一個(gè)零點(diǎn).
(3)fn′(x)=n·xn-1.
因?yàn)?img src="http://thumb.1010pic.com/pic2/upload/papers/20140824/20140824052755139909.png" style="vertical-align:middle;" />=,
所以,
解得x0.
則x0-m=,
當(dāng)m>1時(shí),(n+1)(mn-1)>0.
設(shè)h(x)=-xn+1+x(n+1)-n(x≥1),則h′(x)=-(n+1)xn+n+1=-(n+1)·(xn-1)≤0,當(dāng)且僅當(dāng)x=1時(shí)取等號(hào),
所以h(x)在[1,+∞)上是減函數(shù).
又m>1,所以h(m)<h(1)=0,
所以x0-m<0,所以x0<m.
當(dāng)0<m<1時(shí),(n+1)(mn-1)<0.
設(shè)h(x)=-xn+1+x(n+1)-n(0<x≤1),
則h′(x)=-(n+1)xn+n+1=-(n+1)·(xn-1)≥0,當(dāng)且僅當(dāng)x=1時(shí)取等號(hào),所以h(x)在(0,1]上是增函數(shù).
又因?yàn)?<m<1,所以h(m)<h(1)=0,
所以x0-m>0,所以x0>m.
綜上所述,當(dāng)m>1時(shí),x0<m,當(dāng)0<m<1時(shí),x0>m.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù)上的最大值為).
(1)求數(shù)列的通項(xiàng)公式;
(2)求證:對(duì)任何正整數(shù)n (n≥2),都有成立;
(3)設(shè)數(shù)列的前n項(xiàng)和為Sn,求證:對(duì)任意正整數(shù)n,都有成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知為常數(shù),且,函數(shù), 
是自然對(duì)數(shù)的底數(shù)).
(1)求實(shí)數(shù)的值;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)當(dāng)時(shí),是否同時(shí)存在實(shí)數(shù)),使得對(duì)每一個(gè),直線與曲線都有公共點(diǎn)?若存在,求出最小的實(shí)數(shù)和最大的實(shí)數(shù);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù),其中.
(1)討論在其定義域上的單調(diào)性;
(2)當(dāng)時(shí),求取得最大值和最小值時(shí)的的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

,且函數(shù)處有極值,則ab的最大值為   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)f(x)=1+x-+…+,則下列結(jié)論正確的是(  )
A.f(x)在(0,1)上恰有一個(gè)零點(diǎn)
B.f(x)在(0,1)上恰有兩個(gè)零點(diǎn)
C.f(x)在(-1,0)上恰有一個(gè)零點(diǎn)
D.f(x)在(-1,0)上恰有兩個(gè)零點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)為小于的常數(shù)).
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)存在使不等式成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知,若等于(   )
A.B.eC.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若函數(shù),則(    ).
A.B.
C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案