【題目】解下列三角方程:

1;

2;

3;

4

【答案】1;(2;(3;(4

【解析】

1)將方程變形,結(jié)合正弦函數(shù)的圖象與性質(zhì)即可求得

2)將方程變形,求得,結(jié)合正切函數(shù)的圖象與性質(zhì)即可求解;

3)由二倍角公式,結(jié)合同角三角函數(shù)關(guān)系式代入方程化簡,解方程即可求得的值,結(jié)合角的范圍即可用反三角函數(shù)表示出;

4)將三角函數(shù)方程化簡變形,因式分解后可求得的值,再結(jié)合正弦函數(shù)圖象與性質(zhì)即可求得;

1)因為,

解得,由正弦函數(shù)的的圖象與性質(zhì)可知;

2)因為

所以,

由正切函數(shù)的圖象與性質(zhì)可得,

所以

3)因為,

,

,

所以,化簡可得,

解得(舍),

因為,所以;

4)因為,

所以,

化簡可得

(舍),

所以,

由正弦函數(shù)的圖象與性質(zhì)可得.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知

1)求的單調(diào)區(qū)間;

2)若在其公共點處切線相同,求實數(shù)a的值;

3)記,若函數(shù)存在兩個零點,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知8支球隊中有3支弱隊,以抽簽方式將這8支球隊分為AB兩組,每組4支.求:(1AB兩組中有一組恰有兩支弱隊的概率;

2A組中至少有兩支弱隊的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在二項式的展開式中,前三項系數(shù)的絕對值成等差數(shù)列。

(1)求展開式的第四項;

(2)求展開式的常數(shù)項;

(3)求展開式中各項的系數(shù)和

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙兩人各射擊一次,擊中目標的概率分別是,假設(shè)兩人射擊是否擊中目標,相互之間沒有影響;每次射擊是否擊中目標,相互之間沒有影響.

1)求甲射擊4次,至多1次未擊中目標的概率;

2)求兩人各射擊4次,甲恰好擊中目標2次且乙恰好擊中目標3次的概率;

3)假設(shè)某人連續(xù)2次未擊中目標,則停止射擊,求乙恰好射擊5次后被中止射擊的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐P-ABCD中,PA⊥平面ABCD,EBD的中點,GPD的中點,,,,連接CE并延長交ADF.

1)求證:AD⊥平面CFG;

2)求平面BCP與平面DCP的夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知0m2,動點M到兩定點F1(﹣m,0),F2m,0)的距離之和為4,設(shè)點M的軌跡為曲線C,若曲線C過點.

1)求m的值以及曲線C的方程;

2)過定點且斜率不為零的直線l與曲線C交于A,B兩點.證明:以AB為直徑的圓過曲線C的右頂點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若一束平行光線照射到一個棱長為1的正方體表面上,俯視圖在正方體正后方垂直于光線的平面上留下影子的面積為,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知0m2,動點M到兩定點F1(﹣m,0),F2m,0)的距離之和為4,設(shè)點M的軌跡為曲線C,若曲線C過點.

1)求m的值以及曲線C的方程;

2)過定點且斜率不為零的直線l與曲線C交于A,B兩點.證明:以AB為直徑的圓過曲線C的右頂點.

查看答案和解析>>

同步練習冊答案