2.男嬰為24人,女嬰為8人;出生時(shí)間在白天的男嬰為31人,女嬰為26人.
(1)將下面的2×2列聯(lián)表補(bǔ)充完整;
出生時(shí)間
性別
晚上白天合計(jì)
男嬰
女嬰
合計(jì)
(2)能否在犯錯(cuò)誤的概率不超過0.1的前提下認(rèn)為嬰兒性別與出生時(shí)間有關(guān)系?
參考公式:(1)K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$(其中n=a+b+c+d);
(2)獨(dú)立性檢驗(yàn)的臨界值表:
P(K2≥k00.100.050.010
k02.7063.8416.635

分析 (1)根據(jù)各時(shí)段出生人數(shù)填表,
(2)計(jì)算K2觀測(cè)值,判斷是否大于2.706即可.

解答 解:(1)

出生時(shí)間
性別
晚上白天合計(jì)
男嬰243155
女嬰82634
合計(jì)325789
(2)由所給數(shù)據(jù)計(jì)算出K2的觀測(cè)值k≈3.689,而根據(jù)表知
P(K2≥2.706)≈0.10,
而3.689>2.706,因此在犯錯(cuò)誤概率不超過0.1的前提下認(rèn)為“嬰兒的性別與出生的時(shí)間有關(guān)系”.

點(diǎn)評(píng) 本題考查了獨(dú)立性檢驗(yàn)的應(yīng)用,掌握檢驗(yàn)方法是關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,已知四棱錐P-ABCD,底面ABCD為菱形,PA⊥平面ABCD,∠ABC=60°,E,F(xiàn)分別是BC,PC的中點(diǎn).
(1)證明:AE⊥PD;
(2)若H為PD上的動(dòng)點(diǎn),EH與平面PAD所成最大角的正弦值為$\frac{{\sqrt{15}}}{5}$,求二面角E-AF-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若橢圓$\frac{x^2}{5}+\frac{y^2}{m}=1$的離心率為$e=\frac{1}{2}$,則m的值為( 。
A.$\frac{20}{3}$B.$\frac{15}{4}$或$\frac{20}{3}$C.$\frac{15}{4}$D.$\frac{20}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.若函數(shù)f(x)在定義域內(nèi)存在實(shí)數(shù)x,滿足f(-x)=-f(x),則稱f(x)為“局部奇函數(shù)”.
(1)當(dāng)定義域?yàn)閇-1,1],試判斷f(x)=x4+x3+x2+x-1是否為“局部奇函數(shù)”;
(2)若g(x)=4x-m•2x+1+m2-3為定義域R上的“局部奇函數(shù)”,求實(shí)數(shù)m的范圍;
(3)已知a>1,對(duì)于任意的$b∈[1,\frac{3}{2}]$,函數(shù)h(x)=ln(x+1+a)+x2+x-b都是定義域?yàn)閇-1,1]上的“局部奇函數(shù)”,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.函數(shù)y=e|-lnx|-|x-1|的圖象大致是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)e是橢圓$\frac{x^2}{k}+\frac{y^2}{4}=1$的離心率,且$e∈({\frac{1}{2},1})$,則實(shí)數(shù)k的取值范圍是( 。
A.(0,3)B.$({3,\frac{16}{3}})$C.(0,2)D.$({0,3})∪({\frac{16}{3},+∞})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若f(x)=ex,則$\lim_{△x→0}\frac{{f({1+2△x})-f(1)}}{△x}$=( 。
A.eB.2eC.-eD.$\frac{1}{2}e$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.在正方體ABCD-A1B1C1D1中,O為正方形ABCD中心,則A1O與平面ABCD所成角的正切值為( 。
A.$\sqrt{2}$B.$\frac{\sqrt{2}}{2}$C.1D.$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)$f(x)=\frac{lnx}{x}-\frac{k}{x}$(k∈R).
(1)若函數(shù)f(x)的最大值為h(k),k≠1,試比較h(k)與$\frac{1}{{{e^{2k}}}}$的大;
(2)若不等式${x^2}f(x)+\frac{1}{x+1}≥0$與$k≥-x+4\sqrt{x}-\frac{15}{4}$在[1,+∞)上均恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案