精英家教網(wǎng)已知長方體ABCD-A1B1C1D1中,AB=AA1=2,AD=4,E為側面AB1的中心,F(xiàn)為A1D1的中點.試計算:
(1)
BC
ED1

(2)
EF
FC1
分析:將正方體的從頂點A出發(fā)的三條棱對應的向量設為基底
(1)將
BC
,
ED1
用基底表示,將它們的數(shù)量積用基底的數(shù)量積表示利用數(shù)量積的運算律求出值.
(2)將
EF
, 
FC1
用基底表示,將它們的數(shù)量積用基底的數(shù)量積表示利用數(shù)量積的運算律求出值
解答:解:如圖,設
AB
=
a
,
AD
=
b
AA1
=
c
,
則|
a
|=|
c
|=2,|
b
|=4,
a
b
=
b
c
=
c
a
=0

(1)
BC
ED
1

=
b
•[
1
2
(
c
-
a
)+
b
]

=|
b
|
2
=42=16;

(2)
EF
FC1
=[
1
2
c
-
a
)+
1
2
b
]•(
1
2
b+
a

=
1
2
(-
a
+
b
+
c
)•(
1
2
b
+
a

=-
1
2
|
a
|2+
1
4
|
b
|2
=2.
點評:本題考查利用向量的運算法則將未知的向量用已知向量表示從而將未知向量的數(shù)量積用已知向量的數(shù)量積表示.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)已知長方體ABCD-A1B1C1D1中,AB=2,BC=4,AA1=4,點M是棱D1C1的中點.
(1)試用反證法證明直線AB1與BC1是異面直線;
(2)求直線AB1與平面DA1M所成的角(結果用反三角函數(shù)值表示).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知長方體ABCD-A1B1C1D1中,DA=DD1=1,DC=
2
,點E是B1C1的中點,點F在AB上,建立空間直角坐標系如圖所示.
(1)求
AE
的坐標及長度;
(2)求點F的坐標,使直線DF與AE的夾角為90°.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知長方體ABCD-A1B1C1D1中,M、N分別是BB1和BC的中點,AB=4,AD=2,BB1=2
15
,求異面直線B1D與MN所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知長方體ABCD-A1B1C1D1,AB=BC=1,BB1=2,連接B1C,過B點作B1C.
的垂線交CC1于E,交B1C于F.
(I)求證:A1C⊥平面EBD;
(Ⅱ)求直線DE與平面A1B1C所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知長方體ABCD-A1B1C1D1,下列向量的數(shù)量積一定不為0的是( 。
精英家教網(wǎng)
A、
AD1
B1C
B、
BD1
AC
C、
AB
AD1
D、
BD1
BC

查看答案和解析>>

同步練習冊答案