【題目】已知四棱錐,底面為菱形, ,H為上的點(diǎn),過的平面分別交于點(diǎn),且平面.
(1)證明: ;
(2)當(dāng)為的中點(diǎn), ,與平面所成的角為,求二面角的余弦值.
【答案】(1)見解析; (2).
【解析】
(1)連結(jié)交于點(diǎn),連結(jié).由題意可證得平面,則.由線面平行的性質(zhì)定理可得,據(jù)此即可證得題中的結(jié)論;
(2)結(jié)合幾何體的空間結(jié)構(gòu)特征建立空間直角坐標(biāo)系,求得半平面的法向量,然后求解二面角的余弦值即可.
(1)證明:連結(jié)交于點(diǎn),連結(jié).因?yàn)?/span>為菱形,所以,且為、的中點(diǎn),因?yàn)?/span>,所以,
因?yàn)?/span>且平面,所以平面,
因?yàn)?/span>平面,所以.
因?yàn)?/span>平面, 平面,且平面平面,
所以,所以.
(2)由(1)知且,因?yàn)?/span>,且為的中點(diǎn),
所以,所以平面,所以與平面所成的角為,
所以,所以,因?yàn)?/span>,所以.
分別以, , 為軸,建立如圖所示空間直角坐標(biāo)系,設(shè),則
,
所以.
記平面的法向量為,則,
令,則,所以,
記平面的法向量為,則,
令,則,所以,
記二面角的大小為,則.
所以二面角的余弦值為 .
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在梯形中,,,,四邊形是直角梯形,,,,平面平面.
(1)求證:平面;
(2)在線段上是否存在一點(diǎn),使得平面與平面所成的銳二面角的余弦值為,若存在,求出點(diǎn)的位置;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】圖一是美麗的“勾股樹”,它是一個直角三角形分別以它的每一邊向外作正方形而得到.圖二是第1代“勾股樹”,重復(fù)圖二的作法,得到圖三為第2代“勾股樹”,以此類推,已知最大的正方形面積為1,則第代“勾股樹”所有正方形的個數(shù)與面積的和分別為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)滿足,且當(dāng)時,成立,若,,,則a,b,c的大小關(guān)系是()
A. aB. C. D. c
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,點(diǎn)坐標(biāo)為.
(1)如圖1,斜率存在且過點(diǎn)的直線與圓交于兩點(diǎn).①若,求直線的斜率;②若,求直線的斜率.
(2)如圖2,為圓上兩個動點(diǎn),且滿足,為中點(diǎn),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)時,證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓: 的離心率為,過其右焦點(diǎn)與長軸垂直的直線與橢圓在第一象限相交于點(diǎn), .
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)橢圓的左頂點(diǎn)為,右頂點(diǎn)為,點(diǎn)是橢圓上的動點(diǎn),且點(diǎn)與點(diǎn), 不重合,直線與直線相交于點(diǎn),直線與直線相交于點(diǎn),求證:以線段為直徑的圓恒過定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】袋子中裝有除顏色外其他均相同的編號為a,b的兩個黑球和編號為c,d,e的三個紅球,從中任意摸出兩個球.
(1)求恰好摸出1個黑球和1個紅球的概率:
(2)求至少摸出1個黑球的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知橢圓C:的左右焦點(diǎn)分別為F1,F(xiàn)2,直線l:y=kx+m與橢圓C交于A,B兩點(diǎn).O為坐標(biāo)原點(diǎn).
(1)若直線l過點(diǎn)F1,且|AB|=,求k的值;
(2)若以AB為直徑的圓過原點(diǎn)O,試探究點(diǎn)O到直線AB的距離是否為定值?若是,求出該定值;若不是,請說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com