【題目】已知函數(shù)滿足,且當(dāng)時(shí),成立,若,,,則a,b,c的大小關(guān)系是()
A. aB. C. D. c
【答案】C
【解析】
根據(jù)題意,構(gòu)造函數(shù)h(x)=xf(x),則a=h(20.6),b=h(ln2),c=()f()=h(﹣3),分析可得h(x)為奇函數(shù)且在(﹣∞,0)上為減函數(shù),進(jìn)而分析可得h(x)在(0,+∞)上為減函數(shù),分析有0<ln2<1<20.6,結(jié)合函數(shù)的單調(diào)性分析可得答案.
解:根據(jù)題意,令h(x)=xf(x),
h(﹣x)=(﹣x)f(﹣x)=﹣xf(x)=﹣h(x),則h(x)為奇函數(shù);
當(dāng)x∈(﹣∞,0)時(shí),h′(x)=f(x)+xf'(x)<0,則h(x)在(﹣∞,0)上為減函數(shù),
又由函數(shù)h(x)為奇函數(shù),則h(x)在(0,+∞)上為減函數(shù),
所以h(x)在R上為減函數(shù),
a=(20.6)f(20.6)=h(20.6),b=(ln2)f(ln2)=h(ln2),c=()f()=h()=h(﹣3),
因?yàn)?/span>0<ln2<1<20.6,
則有;
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校藝術(shù)節(jié)對(duì)同一類的,,,四項(xiàng)參賽作品,只評(píng)一項(xiàng)一等獎(jiǎng),在評(píng)獎(jiǎng)揭曉前,甲、乙、丙、丁四位同學(xué)對(duì)這四項(xiàng)參賽作品預(yù)測(cè)如下:
甲說:“是或作品獲得一等獎(jiǎng)”;
乙說:“作品獲得一等獎(jiǎng)”;
丙說:“,兩項(xiàng)作品未獲得一等獎(jiǎng)”;
丁說:“是作品獲得一等獎(jiǎng)”.
若這四位同學(xué)中只有兩位說的話是對(duì)的,則獲得一等獎(jiǎng)的作品是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某村莊擬修建一個(gè)無蓋的圓柱形蓄水池(不計(jì)厚度).設(shè)該蓄水池的底面半徑為r米,高為h米,體積為V立方米.假設(shè)建造成本僅與表面積有關(guān),側(cè)面積的建造成本為100元/平方米,底面的建造成本為160元/平方米,該蓄水池的總建造成本為12000π元(π為圓周率).
(1)將V表示成r的函數(shù)V(r),并求該函數(shù)的定義域;
(2)討論函數(shù)V(r)的單調(diào)性,并確定r和h為何值時(shí)該蓄水池的體積最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,梯形ABCD中,AD∥BC,AD=AB=1,AD⊥AB,∠BCD=45°,將△ABD沿對(duì)角線BD折起,設(shè)折起后點(diǎn)A的位置為A′,使二面角A′—BD—C為直二面角,給出下面四個(gè)命題:①A′D⊥BC;②三棱錐A′—BCD的體積為;③CD⊥平面A′BD;④平面A′BC⊥平面A′DC.其中正確命題的個(gè)數(shù)是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司要在一條筆直的道路邊安裝路燈,要求燈柱與地面垂直,燈桿與燈柱所在的平面與道路走向垂直,路燈采用錐形燈罩,射出的光線與平面的部分截面如圖中陰影部分所示.已知,,路寬米.設(shè).
(1)求燈柱的高(用表示);
(2)此公司應(yīng)該如何設(shè)置的值才能使制造路燈燈柱與燈桿所用材料的總長度最。孔钚≈禐槎嗌?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列{an}滿足an+1+an=4n﹣3(n∈N*)
(1)若{an}是等差數(shù)列,求其通項(xiàng)公式;
(2)若{an}滿足a1=2,Sn為{an}的前n項(xiàng)和,求S2n+1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四棱錐,底面為菱形, ,H為上的點(diǎn),過的平面分別交于點(diǎn),且平面.
(1)證明: ;
(2)當(dāng)為的中點(diǎn), ,與平面所成的角為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】高三某班20名男生在一次體檢中被平均分為兩個(gè)小組,第一組和第二組學(xué)生身高(單位:cm)的統(tǒng)計(jì)數(shù)據(jù)用莖葉圖表示(如圖).
(1)求第一組學(xué)生身高的平均數(shù)和方差;
(2)從身高超過180cm的五位同學(xué)中隨機(jī)選出兩位同學(xué)參加;@球隊(duì)集訓(xùn),求這兩位同學(xué)在同一小組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高三年級(jí)50名學(xué)生參加數(shù)學(xué)競賽,根據(jù)他們的成績繪制了如圖所示的頻率分布直方圖,已知分?jǐn)?shù)在的矩形面積為,
求:分?jǐn)?shù)在的學(xué)生人數(shù);
這50名學(xué)生成績的中位數(shù)精確到;
若分?jǐn)?shù)高于60分就能進(jìn)入復(fù)賽,從不能進(jìn)入復(fù)賽的學(xué)生中隨機(jī)抽取兩名,求兩人來自不同組的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com