把一個長、寬之比為3:2的矩形分別繞其長和寬旋轉(zhuǎn)360°,得到的兩個幾何體的體積之比為(  )
A、1:3B、2:3
C、4:9D、2:1
考點:旋轉(zhuǎn)體(圓柱、圓錐、圓臺)
專題:計算題,空間位置關(guān)系與距離
分析:利用圓柱的體積公式,分別求體積,即可得出結(jié)論.
解答: 解:設(shè)長為3a,寬為2a,則
分別繞其長和寬旋轉(zhuǎn)360°,得到的兩個幾何體的體積之比為π•(2a)2•3a:π•(3a)2•2a=2:3,
故選:B.
點評:本題考查圓柱的體積公式,考查學(xué)生的計算能力,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

條件p:(1-x)(1+x)>0,條件q:lg
(1+x)+(1-x)2
有意義,則¬p是¬q(  )
A、充分不必要
B、必要不充分
C、充要條件
D、既不充分也不必要

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某露天劇場有28排座位,每相鄰兩排的座位數(shù)相同,第一排有24個座位,以后每隔一排增加兩個座位,則全劇場共有座位
 
個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點A(2,5)與點B(4,-7),試在y軸上求一點P,使及|PA|+|PB|的值為最。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+2xsinα-1,x∈[-
3
2
,
1
2
],α∈[0,2π].
(1)當(dāng)α=
π
6
時,求f(x)的最大值和最小值,并求使函數(shù)取得最值的x的值;
(2)求α的取值范圍,使得f(x)在區(qū)間[-
3
2
,
1
2
]上是單調(diào)函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知與直線x=-5相切的動圓P同時與圓x2+y2=1外切,求動圓圓心P的軌跡方程
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(x,4,1),
b
=(-2,y,-1),且
a
b
,則x=
 
,y=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于定義域為正整數(shù)N+,值域為正整數(shù)N+的子集的函數(shù)y=f(x),若滿足①y=f(x)為單調(diào)增函數(shù);②對于任意的n∈N+,都有f(f(n))=4n,則該函數(shù)為“H函數(shù)”.
(1)判斷若函數(shù)f(x)=2x(x∈N+)是否為“H函數(shù)”;
(2)證明:若函數(shù)y=f(x)為“H”,則對于任意的n∈N+,都有
8
5
n≤f(n)≤
5
3
n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

與直線x+y+3=0平行,且它們之間的距離為3
2
的直線方程為(  )
A、x-y+8=0或x-y-1=0
B、x+y+8=0或x+y-1=0
C、x+y-3=0或x+y+3=0
D、x+y-3=0或x+y+9=0

查看答案和解析>>

同步練習(xí)冊答案