如圖,已知橢圓
過點(diǎn)
,離心率為
,左、右焦點(diǎn)分別為
、
.點(diǎn)
為直線
上且不在
軸上的任意一點(diǎn),直線
和
與橢圓的交點(diǎn)分別為
、
和
、
,
為坐標(biāo)原點(diǎn).設(shè)直線
、
的斜率分別為
、
.
(i)證明:
;
(ii)問直線
上是否存在點(diǎn)
,使得直線
、
、
、
的斜率
、
、
、
滿足
?若存在,求出所有滿足條件的點(diǎn)
的坐標(biāo);若不存在,說明理由.
(1)根據(jù)橢圓的方程以及斜率公式來得到求解。
(2)點(diǎn)
的坐標(biāo)為
或
試題分析:(i).橢圓方程為
,
、
設(shè)
則
,
,
2分
(ii)記A、B、C、D坐標(biāo)分別為
、
、
、
設(shè)直線
:
:
聯(lián)立
可得
4分
,代入
,
可得
6分
同理,聯(lián)立
和橢圓方程,可得
7分
由
及
(由(i)得)可解得
,或
,所以直線方程為
或
,
所以點(diǎn)
的坐標(biāo)為
或
10分
點(diǎn)評(píng):主要是考查了直線與橢圓的位置關(guān)系,以及運(yùn)用韋達(dá)定理求解斜率和,進(jìn)而得到直線的方程,得到點(diǎn)P的坐標(biāo),屬于中檔題。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓
的離心率為
,且經(jīng)過點(diǎn)
.
(Ⅰ)求橢圓的方程;
(Ⅱ)如果過點(diǎn)
的直線與橢圓交于
兩點(diǎn)(
點(diǎn)與
點(diǎn)不重合),
①求
的值;
②當(dāng)
為等腰直角三角形時(shí),求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
橢圓
:
的左、右焦點(diǎn)分別是
,離心率為
,過
且垂直于
軸的直線被橢圓
截得的線段長(zhǎng)為
。
(Ⅰ)求橢圓
的方程;
(Ⅱ)點(diǎn)
是橢圓
上除長(zhǎng)軸端點(diǎn)外的任一點(diǎn),連接
,設(shè)
的角平分線
交
的長(zhǎng)軸于點(diǎn)
,求
的取值范圍;
(Ⅲ)在(Ⅱ)的條件下,過點(diǎn)
作斜率為
的直線
,使
與橢圓
有且只有一個(gè)公共點(diǎn),設(shè)直線的
斜率分別為
。若
,試證明
為定值,并求出這個(gè)定值。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知點(diǎn)
是直線
被橢圓
所截得的線段中點(diǎn),求直線
的方程。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知
為橢圓
的左右頂點(diǎn),在長(zhǎng)軸
上隨機(jī)任取點(diǎn)
,過
作垂直于
軸的直線交橢圓于點(diǎn)
,則使
的概率為
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
設(shè)橢圓
的四個(gè)頂點(diǎn)A、B、C、D, 若菱形ABCD的內(nèi)切圓恰好經(jīng)過橢圓的焦點(diǎn), 則橢圓的離心率為
__
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
設(shè)橢圓
的左、右焦點(diǎn)分別為
,
上頂點(diǎn)為
,在
軸負(fù)半軸上有一點(diǎn)
,滿足
,且
.
(Ⅰ)求橢圓
的離心率;
(Ⅱ)
是過
三點(diǎn)的圓上的點(diǎn),
到直線
的最大距離等于橢圓長(zhǎng)軸的長(zhǎng),求橢圓
的方程;
(Ⅲ)在(Ⅱ)的條件下,過右焦點(diǎn)
作斜率為
的直線
與橢圓
交于
兩點(diǎn),線段
的中垂線與
軸相交于點(diǎn)
,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
設(shè)
是方程x
=0的兩個(gè)實(shí)根,那么過點(diǎn)
和
(
)的直線與橢圓
的位置關(guān)系是
查看答案和解析>>