設橢圓的四個頂點A、B、C、D, 若菱形ABCD的內切圓恰好經(jīng)過橢圓的焦點, 則橢圓的離心率為         __  

試題分析:由題意,不妨設點A(a,0),B(0,b),則直線AB的方程為:,即bx+ay-ab=0。
∵菱形ABCD的內切圓恰好過焦點,∴原點到直線AB的距離為,
∴a2b2=c2(a2+b2),∴a2(a2-c2)=c2(2a2-c2),∴a4-3a2c2+c4=0,∴e4-3e2+1=0,
解得e2=,∵0<e<1,∴e=。
點評:中檔題,解題的關鍵是利用菱形ABCD的內切圓恰好過焦點,得到原點到直線AB的距離等于半焦距,確定得到a,b,c的關系。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

給定橢圓 ,稱圓心在原點,半徑為的圓是橢圓的“準圓”.若橢圓的一個焦點為,且其短軸上的一個端點到的距離為.
(Ⅰ)求橢圓的方程和其“準圓”方程;
(Ⅱ)點是橢圓的“準圓”上的一個動點,過動點作直線,使得與橢圓都只有一個交點,試判斷是否垂直,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓(a>b>0)的焦距為4,且與橢圓有相同的離心率,斜率為k的直線l經(jīng)過點M(0,1),與橢圓C交于不同兩點A、B.
(1)求橢圓C的標準方程;
(2)當橢圓C的右焦點F在以AB為直徑的圓內時,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知點P(4, 4),圓C:與橢圓E:有一個公共點A(3,1),F(xiàn)1、F2分別是橢圓的左、右焦點,直線PF1與圓C相切.

(Ⅰ)求m的值與橢圓E的方程;(Ⅱ)設Q為橢圓E上的一個動點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知橢圓過點,離心率為,左、右焦點分別為、.點為直線上且不在軸上的任意一點,直線與橢圓的交點分別為、,為坐標原點.設直線的斜率分別為、

(i)證明:
(ii)問直線上是否存在點,使得直線、的斜率、、、滿足?若存在,求出所有滿足條件的點的坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

橢圓的左焦點為F,右頂點為A,以FA為直徑的圓經(jīng)過橢圓的上頂點,則橢圓的離心率為(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓C:(a>b>0),則稱以原點為圓心,r=的圓為橢圓C的“知己圓”。
(Ⅰ)若橢圓過點(0,1),離心率e=;求橢圓C方程及其“知己圓”的方程;
(Ⅱ)在(Ⅰ)的前提下,若過點(0,m)且斜率為1的直線截其“知己圓”的弦長為2,求m的值;
(Ⅲ)討論橢圓C及其“知己圓”的位置關系.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知是長軸為的橢圓上三點,點是長軸的一個頂點,過橢圓中心,且.

(1)建立適當?shù)淖鴺讼,求橢圓方程;
(2)如果橢圓上兩點使直線軸圍成底邊在軸上的等腰三角形,是否總存在實數(shù)使?請給出證明.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的一個焦點是,且截直線所得弦長為,求該橢圓的方程.

查看答案和解析>>

同步練習冊答案