分析 化簡函數(shù)f(x),利用二次函數(shù)與三角函數(shù)的圖象和性質(zhì),求出函數(shù)f(x)的值域即可.
解答 解:∵f(x)=sin2x+cosx=1-cos2x+cosx=-${(cosx-\frac{1}{2})}^{2}$+$\frac{5}{4}$,
且x∈[-$\frac{π}{3}$,$\frac{2π}{3}$],
∴cosx∈[-$\frac{1}{2}$,$\frac{1}{2}$],
∴-1≤cosx-$\frac{1}{2}$≤0,
∴-1≤-${(cosx-\frac{1}{2})}^{2}$≤0,
∴$\frac{1}{4}$≤-${(cosx-\frac{1}{2})}^{2}$≤$\frac{5}{4}$,
即函數(shù)f(x)的值域?yàn)閇$\frac{1}{4}$,$\frac{5}{4}$].
故答案為:[$\frac{1}{4}$,$\frac{5}{4}$].
點(diǎn)評 本題考查了三角函數(shù)的化簡與求值的應(yīng)用問題,也考查了求函數(shù)最值的應(yīng)用問題,是基礎(chǔ)題目.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | tan2$\frac{θ}{2}$<1 | B. | tan2$\frac{θ}{2}$>1 | C. | sin$\frac{θ}{2}$>cos$\frac{θ}{2}$ | D. | sin$\frac{θ}{2}$<cos$\frac{θ}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3$\sqrt{3}$ | B. | $\sqrt{3}$ | C. | 2$\sqrt{3}$ | D. | 4$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)=$\sqrt{(x-1)^{2}}$,g(x)=x-1 | B. | f(x)=$\sqrt{{x}^{2}-1}$,g(x)=$\sqrt{x+1}$•$\sqrt{x-1}$ | ||
C. | f(x)=ln ex與g(x)=elnx | D. | f(x)=(x-1)0與g(x)=$\frac{1}{(x-1)^{0}}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 相離 | B. | 相交 | C. | 外切 | D. | 內(nèi)切 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-1,0) | B. | (0,1) | C. | (1,+∞) | D. | ∅ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com