【題目】下列命題:
①相關(guān)指數(shù)越小,則殘差平方和越小,模型的擬合效果越好.
②在的列聯(lián)表中我們可以通過(guò)等高條形圖直觀判斷兩個(gè)變量是否有關(guān).
③殘差點(diǎn)比較均勻地落在水平帶狀區(qū)域內(nèi),帶狀區(qū)域越窄,說(shuō)明模型擬合精度越高.
④兩個(gè)隨機(jī)變量相關(guān)性越強(qiáng),則相關(guān)系數(shù)r越接近1.
其中正確命題的個(gè)數(shù)為( ).
A.1B.2C.3D.4
【答案】B
【解析】
對(duì)用來(lái)衡量擬合效果好壞的幾個(gè)量,即相關(guān)指數(shù)、殘差平方和及殘差圖中帶狀區(qū)域的寬窄進(jìn)行分析;隨機(jī)變量相關(guān)性強(qiáng)弱,用相關(guān)系數(shù)的絕對(duì)值大小來(lái)體現(xiàn);在獨(dú)立性檢驗(yàn)中,可用兩等高條形圖直觀判斷兩個(gè)變量是否有關(guān).
①相關(guān)指數(shù)越小,則殘差平方和越大,
模型的擬合效果不好,所以錯(cuò)誤;
②在的列聯(lián)表中我們可以通過(guò)等高條形圖直觀判斷兩個(gè)變量是否有關(guān),
所以正確;
③殘差點(diǎn)比較均勻地落在水平帶狀區(qū)域內(nèi),
帶狀區(qū)域越窄,說(shuō)明模型擬合精度越高,所以正確;
④兩個(gè)隨機(jī)變量相關(guān)性越強(qiáng),則相關(guān)系數(shù)r的絕對(duì)值越接近1,
所以錯(cuò)誤.
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】小李根據(jù)以往多次考試狀態(tài)研究得到,今后三次考試數(shù)學(xué)考分以上的概率相同.現(xiàn)用隨機(jī)模擬的方法預(yù)測(cè)三次考試有兩次數(shù)學(xué)考分以上的概率,規(guī)定投一次骰子出現(xiàn)點(diǎn)和點(diǎn)代表考分以上;投三次骰子代表三次;產(chǎn)生的三個(gè)隨機(jī)數(shù)作為一組.得到的組隨機(jī)數(shù)如下:,,,,,,,,,.則在此次隨機(jī)模擬試驗(yàn)中,每次數(shù)學(xué)考分以上的概率和三次中數(shù)學(xué)有兩次考分以上的概率的近似值分別為( )
A.,B.,C.,D.,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2017·江蘇高考)如圖,在三棱錐ABCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,點(diǎn)E,F(E與A,D不重合)分別在棱AD,BD上,且EF⊥AD.
求證:(1)EF∥平面ABC;
(2)AD⊥AC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】
11分制乒乓球比賽,每贏一球得1分,當(dāng)某局打成10:10平后,每球交換發(fā)球權(quán),先多得2分的一方獲勝,該局比賽結(jié)束.甲、乙兩位同學(xué)進(jìn)行單打比賽,假設(shè)甲發(fā)球時(shí)甲得分的概率為0.5,乙發(fā)球時(shí)甲得分的概率為0.4,各球的結(jié)果相互獨(dú)立.在某局雙方10:10平后,甲先發(fā)球,兩人又打了X個(gè)球該局比賽結(jié)束.
(1)求P(X=2);
(2)求事件“X=4且甲獲勝”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直角坐標(biāo)系中,圓的方程為為圓上三個(gè)定點(diǎn),某同學(xué)從A點(diǎn)開始,用擲骰子的方法移動(dòng)棋子,規(guī)定:①每擲一次骰子,把一枚棋子從一個(gè)定點(diǎn)沿圓弧移動(dòng)到相鄰下一個(gè)定點(diǎn);②棋子移動(dòng)的方向由擲骰子決定,若擲出骰子的點(diǎn)數(shù)為3的倍數(shù),則按圖中箭頭方向移動(dòng);若擲出骰子的點(diǎn)數(shù)為不為3的倍數(shù),則按圖中箭頭相反的方向移動(dòng).設(shè)擲骰子次時(shí),棋子移動(dòng)到A,B,C處的概率分別為例如:擲骰子一次時(shí),棋子移動(dòng)到A,B,C處的概率分別為,.
(1)分別擲骰子二次,三次時(shí),求棋子分別移動(dòng)到A,B,C處的概率;
(2)擲骰子N次時(shí),若以X軸非負(fù)半軸為始邊,以射線OA,OB,OC為終邊的角的正弦值弦值記為隨機(jī)變量,求的分布列和數(shù)學(xué)期望;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校隨機(jī)抽取部分新生調(diào)查其上學(xué)所需時(shí)間(單位:分鐘),并將所得數(shù)據(jù)繪制成頻率分布直方圖(如圖),其中上學(xué)所需時(shí)間的范圍是,樣本數(shù)據(jù)分組為,,,,.
(1)求直方圖中x的值;
(2)如果上學(xué)所需時(shí)間不少于1小時(shí)的學(xué)生可申請(qǐng)?jiān)趯W(xué)校住宿,若該學(xué)校有600名新生,請(qǐng)估計(jì)新生中有多少名學(xué)生可以申請(qǐng)住宿;
(3)由頻率分布直方圖估計(jì)該校新生上學(xué)所需時(shí)間的平均值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校醫(yī)務(wù)室欲研究晝夜溫差大小與高三患感冒人數(shù)多少之間的關(guān)系,他們統(tǒng)計(jì)了2019年9月至2020年1月每月8號(hào)的晝夜溫差情況與高三因患感冒而就診的人數(shù),得到如下資料:
日期 | 2019年9月8日 | 2019年10月8日 | 2019年11月8日 | 2019年12月8日 | 2020年1月8日 |
晝夜溫差 | 5 | 8 | 12 | 13 | 16 |
就診人數(shù) | 10 | 16 | 26 | 30 | 35 |
該醫(yī)務(wù)室確定的研究方案是先從這5組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).假設(shè)選取的是2019年9月8日與2020年1月8日的2組數(shù)據(jù).
(1)求就診人數(shù)關(guān)于晝夜溫差的線性回歸方程 (結(jié)果精確到0.01)
(2)若由(1)中所求的線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)3人,則認(rèn)為得到的線性回歸方程是理想的,試問(wèn)該醫(yī)務(wù)室所得線性回歸方程是否理想?
參考公式:,.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com