16.在區(qū)間[-1,3]上隨機(jī)取一個(gè)數(shù)x,則|x|≤2的概率為$\frac{3}{4}$.

分析 由條件知-1≤x≤3,然后解不等式的解,根據(jù)幾何概型的概率公式即可得到結(jié)論.

解答 解:在區(qū)間[-1,3]之間隨機(jī)抽取一個(gè)數(shù)x,則-1≤x≤3,
由|x|≤2得-2≤x≤2,
∴根據(jù)幾何概型的概率公式可知滿足|x|≤1的概率為$\frac{2+1}{3+1}$=$\frac{3}{4}$,
故答案為$\frac{3}{4}$.

點(diǎn)評(píng) 本題主要考查幾何概型的概率的計(jì)算,根據(jù)不等式的性質(zhì)解出不等式的是解決本題的關(guān)鍵,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.下列函數(shù)中,既是奇函數(shù)又在區(qū)間(0.+∞)上單調(diào)遞增的函數(shù)是(  )
A.y=1nxB.y=x3C.y=2|x |D.y=-x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知橢圓Γ:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左頂點(diǎn)為A,右焦點(diǎn)為F2,過點(diǎn)F2作垂直于x軸的直線交該橢圓于M、N兩點(diǎn),直線AM的斜率為$\frac{1}{2}$.
(1)求橢圓Γ的離心率;
(2)若△AMN的外接圓在點(diǎn)M處的切線與橢圓交于另一點(diǎn)D,△F2MD的面積為$\frac{6}{7}$,求橢圓Γ的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知圓O經(jīng)過三點(diǎn)A(0,0),B(1,1),C(4,2);
(1)求該圓的方程;
(2)求過點(diǎn)D(2,0)的最短弦所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.?dāng)?shù)列{an}滿足a1=2,${a_{n+1}}=\frac{{1+{a_n}}}{{1-{a_n}}}(n∈{N^*})$,則a6=-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.在△ABC中,已知cosB=$\frac{3}{5}$,sinC=$\frac{2}{3}$,AC=2,那么邊AB等于( 。
A.$\frac{5}{4}$B.$\frac{5}{3}$C.$\frac{20}{9}$D.$\frac{12}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.若函數(shù)f(x)的定義域?yàn)閇1,2],則函數(shù)y=f(x2)的定義域?yàn)椋ā 。?table class="qanwser">A.[1,4]B.[1,$\sqrt{2}$]C.[-$\sqrt{2}$,$\sqrt{2}$]D.[-$\sqrt{2}$,-1]∪[1,$\sqrt{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.在△ABC中,若$\frac{cosA}{cosB}=\frac{a}$,則△ABC是( 。
A.等腰或直角三角形B.等邊三角形
C.直角三角形D.等腰三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知直線l與球O有且只有一個(gè)公共點(diǎn)P,從直線l出發(fā)的兩個(gè)半平面α,β截球O的兩個(gè)截面圓的半徑分別為1、2,二面角α-l-β的平面角為$\frac{2π}{3}$,則球O的表面積$\frac{112}{3}π$.

查看答案和解析>>

同步練習(xí)冊(cè)答案