19.執(zhí)行如圖的程序框圖,則輸出的i=6.([$\frac{S}{3}$]表示不超過(guò)$\frac{S}{3}$的最大整數(shù))

分析 由已知中的程序語(yǔ)句,模擬程序的運(yùn)行過(guò)程,分析循環(huán)中各變量值的變化情況,可得答案.

解答 解:由題意,模擬程序的運(yùn)行,可得
S=100,i=1
執(zhí)行循環(huán)體,S=33,i=2
不滿足條件S=0,執(zhí)行循環(huán)體,S=11,i=3
不滿足條件S=0,執(zhí)行循環(huán)體,S=3,i=4
不滿足條件S=0,執(zhí)行循環(huán)體,S=1,i=5
不滿足條件S=0,執(zhí)行循環(huán)體,S=0,i=6
滿足條件S=0,退出循環(huán),輸出i的值為6.
故答案為:6.

點(diǎn)評(píng) 本題考查了程序框圖的應(yīng)用問(wèn)題,解題時(shí)應(yīng)模擬程序框圖的運(yùn)行過(guò)程,以便得出正確的結(jié)論,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.在正方體ABCD-A1B1C1D1中,過(guò)AC與BD1平行的平面必過(guò)( 。
A.DD1的中點(diǎn)B.DD1的三等分點(diǎn)C.D1C1的中點(diǎn)D.A1D1的中點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知函數(shù)f(x)=excosx-x,求f′(x)=ex(cosx-sinx)-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.某地區(qū)以“綠色出行”為宗旨開(kāi)展“共享單車(chē)”業(yè)務(wù).該地區(qū)某高級(jí)中學(xué)一興趣小組由20名高二級(jí)學(xué)生和15名高一級(jí)學(xué)生組成,現(xiàn)采用分層抽樣的方法抽取7人,組成一個(gè)體驗(yàn)小組去市場(chǎng)體驗(yàn)“共享單車(chē)”的使用.問(wèn):
(Ⅰ)應(yīng)從該興趣小組中抽取高一級(jí)和高二級(jí)的學(xué)生各多少人;
(Ⅱ)已知該地區(qū)有X,Y兩種型號(hào)的“共享單車(chē)”,在市場(chǎng)體驗(yàn)中,該體驗(yàn)小組的高二級(jí)學(xué)生都租X型車(chē),高一級(jí)學(xué)生都租Y型車(chē).
(1)如果從組內(nèi)隨機(jī)抽取3人,求抽取的3人中至少有2人在市場(chǎng)體驗(yàn)過(guò)程中租X型車(chē)的概率;
(2)已知該地區(qū)X型車(chē)每小時(shí)的租金為1元,Y型車(chē)每小時(shí)的租金為1.2元,設(shè)為從體驗(yàn)小組內(nèi)隨機(jī)抽取3人得到的每小時(shí)租金之和,求ξ的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.在多面體ABCDEFG中,四邊形ABCD與ADEF是邊長(zhǎng)均為a的正方形,四邊形ABGF是直角梯形,AB⊥AF,且FA=2FG=4FH.
(1)求證:平面BCG⊥平面EHG;
(2)若a=4,求四棱錐G-BCEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.定義在R上的函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),若方程f′(x)=0無(wú)解,f[f(x)-2017x]=2017,當(dāng)g(x)=sinx-cosx-kx在[-$\frac{π}{2},\frac{π}{2}$]上與f(x)在R上的單調(diào)性相同時(shí),則實(shí)數(shù)k的取值范圍是(-∞,-1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.將橢圓的標(biāo)準(zhǔn)方程$\frac{x^2}{9}+\frac{y^2}{4}$=1化為參數(shù)方程:
(1)設(shè)x=3cosφ,φ為參數(shù);
(2)設(shè)x=$\frac{3}{2}$t,t為參數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.如圖所示,在四棱錐P-ABCD中,AB∥CD,且∠BAP=∠CDP=90°.
(1)證明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC,∠APD=90°,求直線PB與平面ABCD所成角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.設(shè)復(fù)數(shù)z=i2017,則復(fù)數(shù)z=( 。
A.-1B.1C.iD.-i

查看答案和解析>>

同步練習(xí)冊(cè)答案