8.如圖所示,在四棱錐P-ABCD中,AB∥CD,且∠BAP=∠CDP=90°.
(1)證明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC,∠APD=90°,求直線PB與平面ABCD所成角的大。

分析 (1)由已知可得PA⊥AB,PD⊥CD,再由AB∥CD,得AB⊥PD,利用線面垂直的判定可得AB⊥平面PAD,進(jìn)一步得到平面PAB⊥平面PAD;
(2)由已知可得四邊形ABCD為平行四邊形,由(1)知AB⊥平面PAD,得到AB⊥AD,則四邊形ABCD為矩形,設(shè)PA=AB=2a,則AD=2$\sqrt{2}$a.取AD中點(diǎn)O,BC中點(diǎn)E,連接PO、OE,以O(shè)為坐標(biāo)原點(diǎn),分別以O(shè)A、OE、OP所在直線為x、y、z軸建立空間直角坐標(biāo)系,利用向量法能求出直線PB與平面ABCD所成角.

解答 證明:(1)∵∠BAP=∠CDP=90°,∴PA⊥AB,PD⊥CD,
∵AB∥CD,∴AB⊥PD,
又∵PA∩PD=P,且PA?平面PAD,PD?平面PAD,
∴AB⊥平面PAD,又AB?平面PAB,
∴平面PAB⊥平面PAD;
解:(2)∵AB∥CD,AB=CD,∴四邊形ABCD為平行四邊形,
由(1)知AB⊥平面PAD,∴AB⊥AD,則四邊形ABCD為矩形,
在△APD中,由PA=PD,∠APD=90°,可得△PAD為等腰直角三角形,
設(shè)PA=AB=2a,則AD=2$\sqrt{2}$a.
取AD中點(diǎn)O,BC中點(diǎn)E,連接PO、OE,
以O(shè)為坐標(biāo)原點(diǎn),分別以O(shè)A、OE、OP所在直線為x、y、z軸建立空間直角坐標(biāo)系,
則B($\sqrt{2}a$,2a,0),P(0,0,$\sqrt{2}a$),$\overrightarrow{PB}$=($\sqrt{2}a,2a,-\sqrt{2}a$),
平面ABCD的法向量$\overrightarrow{n}$=(0,0,1),
設(shè)直線PB與平面ABCD所成角為θ,
則sinθ=$\frac{|\overrightarrow{PB}•\overrightarrow{n}|}{|\overrightarrow{PB}|•|\overrightarrow{n}|}$=$\frac{\sqrt{2}a}{\sqrt{8}a}$=$\frac{1}{2}$,∴θ=30°.
∴直線PB與平面ABCD所成角為30°.

點(diǎn)評 本題考查平面與平面垂直的判定,考查空間想象能力和思維能力,訓(xùn)練了利用空間向量求線面角,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,在底面為平行四邊形的四棱錐P-ABCD中,PA⊥平面ABCD,且BC=2AB=4,∠ABC=60°,點(diǎn)E是PD的中點(diǎn)
(Ⅰ)求證:AC⊥PB
(Ⅱ)若AP=2,求B到平面AEC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.執(zhí)行如圖的程序框圖,則輸出的i=6.([$\frac{S}{3}$]表示不超過$\frac{S}{3}$的最大整數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.一工廠生產(chǎn)某種機(jī)器零件,零件出廠前要進(jìn)行質(zhì)量檢測,檢測的方法是:先從這批零中任取3件做檢測,若這3件都是合格品,則這批零件通過檢測;若這3件中恰有2 件是合格品,則再從剩余零件中任取1件做檢測,若為合格品則這批零件通過檢測;其他情況下,這批零件都不能通過檢測,假設(shè)這批零件的合格率位80%,即取出的零件是合格品的概率都為$\frac{4}{5}$,且各個(gè)零件是否為合格品相互獨(dú)立.
(1)求這批零件通過檢測的概率;
(2)已知每件零件檢測費(fèi)用為50元,抽取的每個(gè)零件都要檢測,對這批零件做質(zhì)量檢測所需費(fèi)用記為X(單位:元),求X的分布列級數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1$(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$,右焦點(diǎn)為F(1,0).
(1)求橢圓E的標(biāo)準(zhǔn)方程;
(2)設(shè)點(diǎn)O為坐標(biāo)原點(diǎn),過點(diǎn)F作直線l與橢圓E交于M,N兩點(diǎn),若$\overrightarrow{OM}•\overrightarrow{ON}=0$,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=$\frac{mx}{lnx}$,曲線y=f(x)在點(diǎn)(e2,f(e2))處的切線與直線2x+y=0垂直.
(Ⅰ)求f(x)的單調(diào)減區(qū)間;
(Ⅱ)討論g(x)=f(x)-$\frac{k{x}^{2}}{x-1}$零點(diǎn)的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若角α的終邊經(jīng)過點(diǎn)P(1,-2),則cos2α=-$\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖所示:邊長為2的正方形ABFC和高為2的直角梯形ADEF所在的平面互相垂直,DE=$\sqrt{2}$,ED∥AF且∠DAF=90°.求證:
(1)EF∥平面BCD;
(2)DE⊥平面BCE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.在正方體ABCD-A1B1C1D1中,BD1與B1C是( 。
A.相交直線B.平行直線
C.異面直線D.相交且垂直的直線

查看答案和解析>>

同步練習(xí)冊答案