已知函數(shù)
(1)若函數(shù)在的單調(diào)遞減區(qū)間(—∞,2],求函數(shù)在區(qū)間[3,5]上的最大值.
(2)若函數(shù)在在單區(qū)間(—∞,2]上是單調(diào)遞減,求函數(shù)的最大值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)(其中a,b為實常數(shù))。
(Ⅰ)討論函數(shù)的單調(diào)區(qū)間:
(Ⅱ)當(dāng)時,函數(shù)有三個不同的零點(diǎn),證明:
(Ⅲ)若在區(qū)間上是減函數(shù),設(shè)關(guān)于x的方程的兩個非零實數(shù)根為,。試問是否存在實數(shù)m,使得對任意滿足條件的a及t恒成立?若存在,求m的取值范圍;若不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
某家庭進(jìn)行理財投資,根據(jù)長期收益率市場預(yù)測,投資債券等穩(wěn)健型產(chǎn)品的收益與投資額成正比,投資股票等風(fēng)險型產(chǎn)品的收益與投資額的算術(shù)平方根成正比.已知投資1萬元時兩類產(chǎn)品的收益分別為0.125萬元和0.5萬元(如圖).
(1)分別寫出兩種產(chǎn)品的收益與投資額的函數(shù)關(guān)系;
(2)該家庭現(xiàn)有20萬元資金,全部用于理財投資,問:怎么分配資金能使投資獲得最大收益,其最大收益是多少萬元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分10分)寧波市的一家報刊點(diǎn),從報社買進(jìn)《寧波日報》的價格是每份0.20元,賣出的價格是每份0.3元,賣不掉的報紙可以以每份0.05元的價格退回報社。在一個月(30天計)里,有20天可以賣出400份,其余10天每天只能賣出250份,但是每天從報社買進(jìn)的份數(shù)必須相同,這個攤主每天從報社買進(jìn)多少份,才能使得每月所獲利潤最大?并計算他一個月最多可以賺多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)若,且滿足
⑴求的值;
⑵若,求的值。                                 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題12分)運(yùn)貨卡車以每小時千米的速度勻速行駛130千米(單位:千米/小時).假設(shè)汽油的價格是每升2a元,而汽車每小時耗油升,司機(jī)的工資是每小時14a元.(1)求這次行車總費(fèi)用關(guān)于的表達(dá)式;(2)當(dāng)為何值時,這次行車的總費(fèi)用最低,并求出最低費(fèi)用的值(a為常數(shù)) .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
設(shè),當(dāng)時,對應(yīng)值的集合為.
(1)求的值;(2)若,求該函數(shù)的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(12分) 若二次函數(shù)f(x)=ax2+bx+c(a≠0)的圖象關(guān)于y軸對稱,
且f(-2)>f(3),設(shè)m>-n>0.
(1) 試證明函數(shù)f(x)在(0,+∞)上是減函數(shù);
(2) 試比較f(m)和f(n)的大小,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分) 已知二次函數(shù)滿足條件,及.
(1)求的解析式;(2)求上的最大和最小值.

查看答案和解析>>

同步練習(xí)冊答案