19.△ABC的三邊長分別為|AB|=7,|BC|=5,|CA|=6,則$\overrightarrow{AB}$•$\overrightarrow{BC}$ 的值為( 。
A.19B.14C.-18D.-19

分析 利用余弦定理求出cosB,利用數(shù)量積公式求出結論.

解答 解:由題意,cosB=$\frac{49+25-36}{2×7×5}$=$\frac{19}{35}$,
∴$\overrightarrow{AB}$•$\overrightarrow{BC}$=5×5×(-$\frac{19}{35}$)=-19.
故選:D.

點評 本題考查余弦定理,數(shù)量積公式的運用,考查學生的計算能力,比較基礎.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

9.若F1、F2是橢圓$\frac{x^2}{16}$+$\frac{y^2}{9}$=1的兩個焦點,過F1作直線與橢圓交于A、B,則△ABF2的周長為16.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知△ABC的外接圓半徑為1,圓心為O,且滿足$\overrightarrow{OA}$+2$\overrightarrow{OB}$+4$\overrightarrow{OC}$=$\overrightarrow{0}$,則$\overrightarrow{AB}$•$\overrightarrow{OC}$=( 。
A.-$\frac{15}{16}$B.-$\frac{7}{16}$C.$\frac{7}{16}$D.$\frac{15}{16}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.設實數(shù)x,y滿足$\left\{\begin{array}{l}{2x+y≤6}\\{x+2y≤6}\\{x≥0,y≥0}\end{array}\right.$,則Z=max{2x+y-1,x+2y+2}的取值范圍是[-1,5].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.在平面直角坐標系xOy中,已知直線l的斜率為2.
(1)若直線l過點 A(-1,3),求直線l的方程;
(2)若直線l在兩坐標軸上的截距之和為4,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知數(shù)列{an}中a1=1,an=$\frac{1}{2}$an-1+1(n≥2),則an=(  )
A.2-($\frac{1}{2}$)n-1B.($\frac{1}{2}$)n-1-2C.2-2n-1D.2n-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.在△ABC 中,A=30°,a=3,b=4,那么滿足條件的△ABC 個數(shù)有( 。
A.不存在B.不能確定C.一個D.兩個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.若向量數(shù)量積$\overrightarrow{a}$•$\overrightarrow$<0則向量$\overrightarrow{a}$與$\overrightarrow$的夾角θ的取值范圍是( 。
A.(0,$\frac{π}{2}$)B.[0,$\frac{π}{2}$)C.($\frac{π}{2}$,π]D.($\frac{π}{2}$,π)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知曲線f(x)=$\frac{{a{x^2}}}{x+1}$在點(1,f(1))處切線的斜率為1,則實數(shù)a的值為(  )
A.$\frac{3}{2}$B.$-\frac{3}{2}$C.$-\frac{3}{4}$D.$\frac{4}{3}$

查看答案和解析>>

同步練習冊答案