【題目】繼共享單車(chē)之后,又一種新型的出行方式------“共享汽車(chē)”也開(kāi)始亮相北上廣深等十余大中城市,一款叫“一度用車(chē)”的共享汽車(chē)在廣州提供的車(chē)型是“奇瑞eQ”,每次租車(chē)收費(fèi)按行駛里程加用車(chē)時(shí)間,標(biāo)準(zhǔn)是“1元/公里+0.1元/分鐘”,李先生家離上班地點(diǎn)10公里,每天租用共享汽車(chē)上下班,由于堵車(chē)因素,每次路上開(kāi)車(chē)花費(fèi)的時(shí)間是一個(gè)隨機(jī)變量,根據(jù)一段時(shí)間統(tǒng)計(jì)40次路上開(kāi)車(chē)花費(fèi)時(shí)間在各時(shí)間段內(nèi)的情況如下:
時(shí)間(分鐘) | |||||
次數(shù) | 8 | 14 | 8 | 8 | 2 |
以各時(shí)間段發(fā)生的頻率視為概率,假設(shè)每次路上開(kāi)車(chē)花費(fèi)的時(shí)間視為用車(chē)時(shí)間,范圍為分鐘.
(Ⅰ)若李先生上.下班時(shí)租用一次共享汽車(chē)路上開(kāi)車(chē)不超過(guò)45分鐘,便是所有可選擇的交通工具中的一次最優(yōu)選擇,設(shè)是4次使用共享汽車(chē)中最優(yōu)選擇的次數(shù),求的分布列和期望.
(Ⅱ)若李先生每天上下班使用共享汽車(chē)2次,一個(gè)月(以20天計(jì)算)平均用車(chē)費(fèi)用大約是多少(同一時(shí)段,用該區(qū)間的中點(diǎn)值作代表).
【答案】(Ⅰ)見(jiàn)解析;(Ⅱ)542元.
【解析】【試題分析】(1)運(yùn)用二項(xiàng)分布建立隨機(jī)變量的概率分布列,再運(yùn)用數(shù)學(xué)期望公式進(jìn)行求解;(2)運(yùn)用加權(quán)平均數(shù)的計(jì)算公式分析求解。
(Ⅰ)李先生一次租用共享汽車(chē),為最優(yōu)選擇的概率
依題意的值可能為0,1,2,3,4
分布列
0 | 1 | 2 | 3 | 4 | |
P |
或
(Ⅱ)每次用車(chē)路上平均花的時(shí)間(分鐘)
每次租車(chē)的費(fèi)用約為10+35.5×0.1=13.55元.
一個(gè)月的平均用車(chē)費(fèi)用約為542元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=|2x﹣1|+|2x+a|,g(x)=x+3. (Ⅰ)當(dāng)a=﹣2時(shí),求不等式f(x)<g(x)的解集;
(Ⅱ)設(shè)a>﹣1,且當(dāng) 時(shí),f(x)≤g(x),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,設(shè)橢圓: 的離心率為, 分別為橢圓的左、右頂點(diǎn), 為右焦點(diǎn),直線與的交點(diǎn)到軸的距離為,過(guò)點(diǎn)作軸的垂線, 為上異于點(diǎn)的一點(diǎn),以為直徑作圓.
(1)求的方程;
(2)若直線與的另一個(gè)交點(diǎn)為,證明:直線與圓相切.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)設(shè)a>0,求函數(shù)f(x)在[2a,4a]上的最小值;
(3)某同學(xué)發(fā)現(xiàn):總存在正實(shí)數(shù)a、b(a<b),使ab=ba , 試問(wèn):他的判斷是否正確?若不正確,請(qǐng)說(shuō)明理由;若正確,請(qǐng)直接寫(xiě)出a的取值范圍(不需要解答過(guò)程).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直三棱柱ABC-A1B1C1中,AB=AC,E是BC的中點(diǎn),求證:
(Ⅰ)平面AB1E⊥平面B1BCC1;
(Ⅱ)A1C//平面AB1E.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= ,g(x)=kx+1,若方程f(x)﹣g(x)=0有兩個(gè)不同實(shí)根,則實(shí)數(shù)k的取值范圍為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本題滿(mǎn)分12分)已知函數(shù)f(x)=2cos x(sin x+cos x).
(1)求f的值;
(2)求函數(shù)f(x)的最小正周期及單調(diào)遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)f(x)的圖象經(jīng)過(guò)點(diǎn)(0, ),且f′(x)=﹣x﹣1,則不等式f(10x)>0的解集為( )
A.(﹣3,1)
B.(﹣lg3,0)
C.( ,1)
D.(﹣∞,0)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解患肺心病是否與性別有關(guān),在某醫(yī)院對(duì)入院者用簡(jiǎn)單隨機(jī)抽樣方法抽取50人進(jìn)行調(diào)查,結(jié)果如下列聯(lián)表:
(Ⅰ)是否有的把握認(rèn)為入院者中患肺心病與性別有關(guān)?請(qǐng)說(shuō)明理由;
(Ⅱ)已知在患肺心病的10位女性中,有3位患胃病.現(xiàn)在從這10位女性中,隨機(jī)選出3名進(jìn)行其它方面的排查,記選出患胃病的女性人數(shù)為,求的分布列和數(shù)學(xué)期望;
附:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
K | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com