【題目】(本題滿分12分)已知函數(shù)f(x)=2cos x(sin x+cos x).

(1)求f的值;

(2)求函數(shù)f(x)的最小正周期及單調(diào)遞增區(qū)間.

【答案】(1)2,(2)函數(shù)f(x)的最小正周期為π,增區(qū)間為,k∈Z.

【解析】試題分析:把代入后利用誘導(dǎo)公式化簡求值,第二步去括號(hào)后利用降冪公式和輔助角公式恒等變形,化為的形式,利用周期公式求出周期,解不等式求出增區(qū)間.

試題解析:

(1)f=2cos

=-2cos=2.

(2)因?yàn)閒(x)=2sin xcos x+2cos2x=sin 2x+cos 2x+1

sin+1,

所以T==π,故函數(shù)f(x)的最小正周期為π.

由2kπ-≤2x+≤2kπ+,k∈Z,得kπ-≤x≤kπ+,k∈Z.

所以f(x)的單調(diào)遞增區(qū)間為,k∈Z.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】用數(shù)學(xué)歸納法證明:(n+1)+(n+2)+…+(n+n)= (n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】

已知數(shù)列{an}的各項(xiàng)均為正數(shù),記數(shù)列{an}的前n項(xiàng)和為Sn,數(shù)列{an2}的前n項(xiàng)和為Tn,且3TnSn2+2Sn,n∈N*

(Ⅰ)求a1的值;

(Ⅱ)求數(shù)列{an}的通項(xiàng)公式

(Ⅲ)若kt∈N*,且S1,SkS1StSk成等比數(shù)列,求kt的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】繼共享單車之后,又一種新型的出行方式------“共享汽車”也開始亮相北上廣深等十余大中城市,一款叫“一度用車”的共享汽車在廣州提供的車型是“奇瑞eQ”,每次租車收費(fèi)按行駛里程加用車時(shí)間,標(biāo)準(zhǔn)是“1元/公里+0.1元/分鐘”,李先生家離上班地點(diǎn)10公里,每天租用共享汽車上下班,由于堵車因素,每次路上開車花費(fèi)的時(shí)間是一個(gè)隨機(jī)變量,根據(jù)一段時(shí)間統(tǒng)計(jì)40次路上開車花費(fèi)時(shí)間在各時(shí)間段內(nèi)的情況如下:

時(shí)間(分鐘)

次數(shù)

8

14

8

8

2

以各時(shí)間段發(fā)生的頻率視為概率,假設(shè)每次路上開車花費(fèi)的時(shí)間視為用車時(shí)間,范圍為分鐘.

(Ⅰ)若李先生上.下班時(shí)租用一次共享汽車路上開車不超過45分鐘,便是所有可選擇的交通工具中的一次最優(yōu)選擇,設(shè)是4次使用共享汽車中最優(yōu)選擇的次數(shù),求的分布列和期望.

(Ⅱ)若李先生每天上下班使用共享汽車2次,一個(gè)月(以20天計(jì)算)平均用車費(fèi)用大約是多少(同一時(shí)段,用該區(qū)間的中點(diǎn)值作代表).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分12分)如圖13,四棱錐P ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點(diǎn).

(1)證明:PB∥平面AEC;

(2)設(shè)AP=1,AD=,三棱錐P ABD的體積V=,求A到平面PBC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2+ax﹣lnx,a∈R
(1)若函數(shù)f(x)在[1,2]上是減函數(shù),求實(shí)數(shù)a的取值范圍
(2)令g(x)=f(x)﹣x2 , 是否存在實(shí)數(shù)a,當(dāng)x∈(0,e]時(shí),函數(shù)g(x)的最小值是3?若存在,求出a的值,若不存在,說明理由
(3)當(dāng)x∈(0,e]時(shí),求證:e2x2 x>(x+1)lnx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)= x3+ax2﹣8x﹣1(a<0).若曲線y=f(x)的切線斜率的最小值是﹣9.求:
(1)a的值;
(2)函數(shù)f(x)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線C:y2=2px(p>0)的焦點(diǎn)F到雙曲線 =1的漸近線的距離為1,過焦點(diǎn)F且斜率為k的直線與拋物線C交于A,B兩點(diǎn),若 ,則k=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱的所有棱長均為2,平面平面, , 的中點(diǎn).

(1)證明: ;

(2)若是棱的中點(diǎn),求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案