若α∈(0,
π
2
),且sin2α+cos2α=
1
4
,則tanα的值等于( 。
A、
2
2
B、
3
3
C、
2
D、
3
分析:把已知的等式中的cos2α,利用同角三角函數(shù)間的基本關(guān)系化簡后,得到關(guān)于sinα的方程,根據(jù)α的度數(shù),求出方程的解即可得到sinα的值,然后利用特殊角的三角函數(shù)值,由α的范圍即可得到α的度數(shù),利用α的度數(shù)求出tanα即可.
解答:解:由cos2α=1-2sin2α,得到sin2α+cos2α=1-sin2α=
1
4
,
則sin2α=
3
4
,又α∈(0,
π
2
),所以sinα=
3
2
,
則α=
π
3
,所以tanα=tan
π
3
=
3

故選D
點評:此題考查學生靈活運用二倍角的余弦函數(shù)公式及同角三角函數(shù)間的基本關(guān)系化簡求值,是一道基礎(chǔ)題.學生做題時應注意角度的范圍.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
3
sin(ωx+?)-cos(ωx+?)  (0<?<π,ω>0)
為偶函數(shù),且函數(shù)y=f(x)圖象的兩相鄰對稱軸的距離為
π
2

(1)求f(x)的解析式;
(2)將函數(shù)y=f(x)的圖象向右平移
π
6
個單位后,得到函數(shù)y=g(x)的圖象,求g(x)的單調(diào)遞減區(qū)間.
(3)若存在x0∈(0,
3
)
,使不等式f(x0)<m成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=(
3
sinωx+cosωx)cosωx-
1
2
(ω>0)
的最小正周期為4π.
(1)求f(x)的單調(diào)遞增區(qū)間;
(2)若存在x∈[0,2π],使不等式f(x)<m成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,過點(0,a3)的兩直線與拋物線y=-ax2相切于A、B兩點,AD、BC垂直于直線y=-8,垂足分別為D、C.
(1)若a=1,求矩形ABCD面積;
(2)若a∈(0,2),求矩形ABCD面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓C:x2+(y-
1
4
)2=
1
16
,動圓M與圓C外切,圓心M在x軸上方且圓M與x軸相切.
(I)求圓心軌跡M的曲線方程;
(II)若A(0,-2)為y軸上一定點,Q(t,0)為x軸上一動點,過點Q且與AQ垂直的直線與軌跡M交于D,B兩點(D在線段BQ上),直線AB與軌跡M交于E點,求
AD
AE
的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)若集合A={0,1,2},B={2,3},分別從A,B中隨機取一個數(shù),求取出的兩個數(shù)的和大于4的概率
(2)若集合A=[0,2],B=[2,3],分別從A,B中隨機取一個數(shù),求取出的兩個數(shù)的和大于4的概率.

查看答案和解析>>

同步練習冊答案