已知雙曲線焦點(diǎn)在x軸上、中心在坐標(biāo)原點(diǎn)O,左、右焦點(diǎn)分別為F1、F2,P為雙曲線右支上一點(diǎn),且數(shù)學(xué)公式,∠F1F2P=90°.
(Ⅰ)求雙曲線的離心率;
(Ⅱ)若過F1且斜率為1的直線l與雙曲線的兩漸近線分別交于A、B兩點(diǎn),△AOB的面積為數(shù)學(xué)公式,求雙曲線的方程.

解:(Ⅰ)設(shè)雙曲線方程為,,
,∠F1F2P=90°及勾股定理得,
由雙曲線定義得

(Ⅱ)∵,∴,雙曲線的兩漸近線方程為
由題意,設(shè)l的方程為y=x+c,l與y軸的交點(diǎn)為M(0,c).
若l與y=交于點(diǎn)A,l與y=-交于點(diǎn)B,
,得;由,得,

=
=,
∴c=4,
∴a=2,則,
故雙曲線方程為
分析:(Ⅰ)設(shè)雙曲線方程為,,由,∠F1F2P=90°及勾股定理得,由此能求出雙曲線的離心率.
(Ⅱ)由,知,雙曲線的兩漸近線方程為.設(shè)l的方程為y=x+c,l與y軸的交點(diǎn)為M(0,c).若l與y=交于點(diǎn)A,l與y=-交于點(diǎn)B,由,得;由,得,再由=,能求出雙曲線方程.
點(diǎn)評:本題考查雙曲線的離心率和雙曲線方程的求法,解題時(shí)要認(rèn)真審題,注意挖掘題設(shè)中的隱含條件,靈活運(yùn)用雙曲線的性質(zhì),合理地進(jìn)行等價(jià)轉(zhuǎn)化.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線焦點(diǎn)在x軸上、中心在坐標(biāo)原點(diǎn)O,左、右焦點(diǎn)分別為F1、F2,P為雙曲線右支上一點(diǎn),且|
F1F2
|=
4
3
|
F2P
|
,∠F1F2P=90°.
(Ⅰ)求雙曲線的離心率;
(Ⅱ)若過F1且斜率為1的直線l與雙曲線的兩漸近線分別交于A、B兩點(diǎn),△AOB的面積為8
3
,求雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知一焦點(diǎn)在x軸上,中心在原點(diǎn)的雙曲線的實(shí)軸等于虛軸,且圖象經(jīng)過點(diǎn)
2,
3

(1)求該雙曲線的方程;
(2)若直線y=kx+1與該雙曲線只有一個(gè)公共點(diǎn),求實(shí)數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年廣東省鶴山一中高二(上)期末數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知一焦點(diǎn)在x軸上,中心在原點(diǎn)的雙曲線的實(shí)軸等于虛軸,且圖象經(jīng)過點(diǎn)
(1)求該雙曲線的方程;
(2)若直線y=kx+1與該雙曲線只有一個(gè)公共點(diǎn),求實(shí)數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年云南省曲靖市羅平縣高三(下)復(fù)習(xí)適應(yīng)性檢測數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知雙曲線焦點(diǎn)在x軸上、中心在坐標(biāo)原點(diǎn)O,左、右焦點(diǎn)分別為F1、F2,P為雙曲線右支上一點(diǎn),且,∠F1F2P=90°.
(Ⅰ)求雙曲線的離心率;
(Ⅱ)若過F1且斜率為1的直線l與雙曲線的兩漸近線分別交于A、B兩點(diǎn),△AOB的面積為,求雙曲線的方程.

查看答案和解析>>

同步練習(xí)冊答案