已知fx=ax2bx1≤f(-1≤2,2≤f1≤4,求f(-2)的取值范圍.

 

答案:
解析:

解:fx=ax2bx1≤f(-1≤2,2≤f1≤4

∴令f(-2=mf(-1)+nf1(*)

f(-2=4a2b,f(-1=ab,f1=ab

將上述式子代入(*)式,有:

4a2b=mab)+nab

4a2b=amn)+bnm

f(-2=3f(-1)+f1

≤3f(-1)+f1≤10

5≤f(-2≤10.

 


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

例2:已知f(x)=ax2+bx+c的圖象過點(-1,0),是否存在常數(shù)a、b、c,使不等式x≤f(x)≤
x2+12
對一切實數(shù)x都成立?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=ax2+bx,若1≤f(1)≤3,-1≤f(-1)≤1,則f(2)的取值范圍是
[2,10]
[2,10]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=ax2-blnx+2x(a>0,b>0)在區(qū)間(
1
2
,1)
上不單調,則
3b-2
3a+2
的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=ax2+bx+c(a≠0),g(x)=f[f(x)]
①若f(x)無零點,則g(x)>0對?x∈R成立;
②若f(x)有且只有一個零點,則g(x)必有兩個零點;
③若方程f(x)=0有兩個不等實根,則方程g(x)=0不可能無解
其中真命題的個數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=ax2-3ax+a2-1(a<0),則f(3),f(-3),f(
3
2
)從小到大的順序是
f(-3)<f(3)<f(
3
2
f(-3)<f(3)<f(
3
2

查看答案和解析>>

同步練習冊答案