已知函數(shù)
(Ⅰ)令,求關(guān)于的函數(shù)關(guān)系式及的取值范圍;
(Ⅱ)求函數(shù)的值域,并求函數(shù)取得最小值時的的值.
(Ⅰ)函數(shù)關(guān)系式,的取值范圍
(Ⅱ)函數(shù)的值域為,.
解析試題分析:(Ⅰ)先利用對數(shù)的運算性質(zhì)轉(zhuǎn)化成關(guān)于的函數(shù),然后利用換元法轉(zhuǎn)化為,最后通過解不等式求出t的范圍.
(Ⅱ)利用數(shù)形結(jié)合的方法觀察出值域,同時指明函數(shù)取得最小值時的的值.本題最好的的方法就是數(shù)形結(jié)合,這樣就比較直觀的通過圖像找出函數(shù)的最小值以及函數(shù)取得最小值時的的值.數(shù)形結(jié)合的方法是高考涉及到的重要的一種思想方法.
試題解析:(Ⅰ)
.............2分
令則,即 2分
又,即
(Ⅱ)由(Ⅰ),數(shù)形結(jié)合得
當時,,當時, 2分
函數(shù)的值域為 2分
當時,,即, 2分
考點:1、對數(shù)的運算性質(zhì);2、數(shù)形結(jié)合的方法;3、二次函數(shù)求值域
科目:高中數(shù)學 來源: 題型:解答題
定義,,.
(1)比較與的大;
(2)若,證明:;
(3)設(shè)的圖象為曲線,曲線在處的切線斜率為,若,且存在實數(shù),使得,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
某工廠某種產(chǎn)品的年固定成本為250萬元,每生產(chǎn)千件,需另投入成本為,當年產(chǎn)量不足80千件時,(萬元).當年產(chǎn)量不小于80千件時,(萬元).每件商品售價為500元.通過市場分析,該廠生產(chǎn)的商品能全部售完.
(1)寫出年利潤(萬元)關(guān)于年產(chǎn)量(千件)的函數(shù)解析式;
(2)年產(chǎn)量為多少千件時,該廠在這一商品的生產(chǎn)中所獲利潤最大?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
湖北省第十四屆運動會紀念章委托某專營店銷售,每枚進價5元,同時每銷售一枚這種紀念章需向荊州籌委會交特許經(jīng)營管理費2元,預計這種紀念章以每枚20元的價格銷售時該店一年可銷售2000枚,經(jīng)過市場調(diào)研發(fā)現(xiàn)每枚紀念章的銷售價格在每枚20元的基礎(chǔ)上每減少一元則增加銷售400枚,而每增加一元則減少銷售100枚,現(xiàn)設(shè)每枚紀念章的銷售價格為元,為整數(shù).
(1)寫出該專營店一年內(nèi)銷售這種紀念章所獲利潤(元)與每枚紀念章的銷售價格(元)的函數(shù)關(guān)系式(并寫出這個函數(shù)的定義域);
(2)當每枚紀念章銷售價格為多少元時,該特許專營店一年內(nèi)利潤(元)最大,并求出最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
某工廠某種產(chǎn)品的年固定成本為250萬元,每生產(chǎn)千件,需另投入成本為,當年產(chǎn)量不足80千件時,(萬元).當年產(chǎn)量不小于80千件時,(萬元).每件商品售價為0.05萬元.通過市場分析,該廠生產(chǎn)的商品能全部售完.
(Ⅰ)寫出年利潤(萬元)關(guān)于年產(chǎn)量(千件)的函數(shù)解析式;
(Ⅱ)年產(chǎn)量為多少千件時,該廠在這一商品的生產(chǎn)中所獲利潤最大?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
若非零函數(shù)對任意實數(shù)均有,且當時
(1)求證:;
(2)求證:為R上的減函數(shù);
(3)當時, 對時恒有,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
某廠生產(chǎn)某種產(chǎn)品的年固定成本為萬元,每生產(chǎn)千件,需另投入成本為.當年產(chǎn)量不足千件時,(萬元).當年產(chǎn)量不小于千件時,(萬元).每件商品售價為萬元.通過市場分析,該廠生產(chǎn)的商品能全部售完.
(1)寫出年利潤(萬元)關(guān)于年產(chǎn)量(千件)的函數(shù)解析式;
(2)年產(chǎn)量為多少千件時,該廠在這一商品的生產(chǎn)中所獲利潤最大?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
對于函數(shù)若存在,使得成立,則稱為的不動點.
已知
(1)當時,求函數(shù)的不動點;
(2)若對任意實數(shù),函數(shù)恒有兩個相異的不動點,求的取值范圍;
(3)在(2)的條件下,若圖象上、兩點的橫坐標是函數(shù)的不動點,且、兩點關(guān)于直線對稱,求的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com