【題目】如圖,在直角梯形 中, , , 為線段 的中點,將 沿 折起,使平面 平面 ,得到幾何體 .

(1)若 分別為線段 的中點,求證: 平面
(2)求證: 平面 ;
(3)求 的值.

【答案】
(1)證明:∵折疊前后CD、BG位置關系不改變,
∴CD∥BG.
∵ E、F分別為線段AC、BD的中點,
∴EF∥CD,
∴ EF∥BG.
又EF 平面ABG,BG平面ABG,
∴ EF∥平面ABG.

(2)證明:∵ 將△ADG沿GD折起后,AG、GD位置關系不改變,
∴AG⊥GD,
又平面ADG⊥平面BCDG,平面ADG∩平面BCDG=GD,AG平面AGD,
∴ AG⊥平面BCDG
(3)由已知得BC=CD=AG=2,
又由(2)得AG⊥平面BCDG,
∴點A到平面BCDG的距離AG=2,

【解析】(1)根據(jù)中位線定理證明EF//CD,再根據(jù)直線與直線平行的性質證明EF//GB,最后根據(jù)直線與平面平行的判定定理,證明 EF//平面ABG。
(2)根據(jù)平面與平面垂直的性質定理可以證明結論。
(3)利用等體積法,結合三棱錐的體積計算公式求解。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】底面為正方形的四棱錐S﹣ABCD,且SD⊥平面ABCD,SD= ,AB=1,線段SB上一M點滿足 = ,N為線段CD的中點,P為四棱錐S﹣ABCD表面上一點,且DM⊥PN,則點P形成的軌跡的長度為(
A.
B.
C.
D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,某種水箱用的“浮球”,是由兩個半球和一個圓柱筒組成的.已知半球的直徑是6 cm,圓柱筒高為2 cm.

(1)這種“浮球”的體積是多少cm3(結果精確到0.1)?
(2)要在2 500個這樣的“浮球”表面涂一層膠,如果每平方米需要涂膠100克,那么共需膠多少克?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐 的底面為正方形,側面 底面 , , 分別為 的中點.

(1)求證:
(2)求證:平面 平面 .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x4﹣2x3 , g(x)=﹣4x2+4x﹣2,x∈R.
(1)求f(x)的最小值;
(2)證明:f(x)>g(x).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x+ ﹣3lnx(a∈R).
(1)若x=3是f(x)的一個極值點,求a值及f(x)的單調區(qū)間;
(2)當a=﹣2時,求f(x)在區(qū)間[1,e]上的最值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知X的分布列為:

X

﹣1

0

1

P

設Y=2X+3,則Y的期望E(Y)=(
A.3
B.1
C.0
D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了普及環(huán)保知識,增強環(huán)保意識,某大學隨機抽取30名學生參加環(huán)保知識測試,得分(十分制)如圖所示,假設得分值的中位數(shù)為me , 眾數(shù)為mO , 平均值為 ,則( )

A.me=mO
B.me=mO<
C.me<mO<
D.mO<me<

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) ,函數(shù) .若函數(shù) 恰好有2個不同的零點,則實數(shù) 的取值范圍是 ( )
A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案