【題目】若某一等差數(shù)列的首項(xiàng)為,公差為展開式中的常數(shù)項(xiàng),其中是除以19的余數(shù),則此數(shù)列前多少項(xiàng)的和最大?并求出這個(gè)最大值.
【答案】此數(shù)列的前25項(xiàng)之和與前26項(xiàng)之和相等且最大,.
【解析】
根據(jù)題意,由排列、組合數(shù)的性質(zhì),可得不等式,解可得n的范圍,結(jié)合n∈N,可得n的值,進(jìn)而可得首項(xiàng)a1,對(duì)7777﹣15變形,結(jié)合二項(xiàng)式定理可得m的值,從而可得數(shù)列的公差,即可得數(shù)列的通項(xiàng)公式,根據(jù)等差數(shù)列的性質(zhì),設(shè)其前k項(xiàng)之和最大,則,解可得k=25或k=26,可得答案.
由已知得:,又,
故.
,所以除以19的余數(shù)是5,即
的展開式的通項(xiàng) ,若它為常數(shù)項(xiàng),則,代入上式.從而等差數(shù)列的通項(xiàng)公式是:,……10分
設(shè)其前k項(xiàng)之和最大,則,解得k=25或k=26,
故此數(shù)列的前25項(xiàng)之和與前26項(xiàng)之和相等且最大,.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=.
(1)判斷函數(shù)f(x)的奇偶性;
(2)判斷并用定義證明函數(shù)f(x)在其定義域上的單調(diào)性.
(3)若對(duì)任意的t1,不等式f()+f()<0恒成立,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在平面直角坐標(biāo)系中,橢圓C的參數(shù)方程為 (θ為參數(shù)).
(1)以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,求橢圓C的極坐標(biāo)方程;
(2)設(shè)M(x,y)為橢圓C上任意一點(diǎn),求x+2y的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)是上的奇函數(shù),且當(dāng)時(shí),,.
(1)若,求的解析式;
(2)若,不等式恒成立,求實(shí)數(shù)的取值范圍;
(3)若的值域?yàn)?/span>,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】是定義在R上的函數(shù),對(duì)∈R都有,且當(dāng)>0時(shí),<0,且=1.
(1)求的值;
(2)求證:為奇函數(shù);
(3)求在[-2,4]上的最值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2002年北京國(guó)際數(shù)學(xué)家大會(huì)會(huì)標(biāo),是以中國(guó)古代數(shù)學(xué)家趙爽的弦圖為基礎(chǔ)而設(shè)計(jì)的,弦圖用四個(gè)全等的直角三角形與一個(gè)小正方形拼成的一個(gè)大正方形如圖,若大、小正方形的面積分別為25和1,直角三角形中較大銳角為,則等于
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算機(jī)在數(shù)據(jù)處理時(shí)使用的是二進(jìn)制,例如十進(jìn)制的1、2、3、4在二進(jìn)制分別表示為1、10、11、100.下面是某同學(xué)設(shè)計(jì)的將二進(jìn)制數(shù)11111化為十進(jìn)制數(shù)的一個(gè)流程圖,則判斷框內(nèi)應(yīng)填入的條件是( )
A.i>4
B.i≤4
C.i>5
D.i≤5
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若偶函數(shù)f(x)在(﹣∞,0]上單調(diào)遞減,a=f(log23),b=f(log45),c=f(2 ),則a,b,c滿足( )
A.a<b<c
B.b<a<c
C.c<a<b
D.c<b<a
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知實(shí)數(shù)x、y滿足 ,目標(biāo)函數(shù)z=x+ay.
(1)當(dāng)a=﹣2時(shí),求目標(biāo)函數(shù)z的取值范圍;
(2)若使目標(biāo)函數(shù)取得最小值的最優(yōu)解有無數(shù)個(gè),求 的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com