6.如圖,正方形ABCD的邊長為2,O為AD的中點,射線OP從OA出發(fā),繞著點O順時針方向旋轉(zhuǎn)至OD,在旋轉(zhuǎn)的過程中,記∠AOP為x(x∈[0,π]),OP所經(jīng)過的在正方形ABCD內(nèi)的區(qū)域(陰影部分)的面積S=f(x),那么對于函數(shù)f(x)有以下三個結論,其中不正確的是(  )
①f($\frac{π}{3}$)=$\frac{\sqrt{3}}{2}$
②函數(shù)f(x)在($\frac{π}{2}$,π)上為減函數(shù)
③任意x∈[0,$\frac{π}{2}$],都有f(x)+f(π-x)=4.
A.B.C.D.①②③

分析 由圖形可得函數(shù)的解析式,再分別判斷,即可得出結論.

解答 解:當0≤x≤arctan2時,f(x)=$\frac{1}{2}$tanx;
當arctan2<x<$\frac{π}{2}$,在△OBE中,f(x)=S矩形OABM-S△OME=2-$\frac{1}{2}$EM•OM=2-$\frac{2}{tanx}$;
當x=$\frac{π}{2}$時,f(x)=2;
當$\frac{π}{2}$<x≤π-arctan2時,同理可得f(x)=2-$\frac{2}{tanx}$.
當π-arctan2<x≤π時,f(x)=4-$\frac{1}{2}$×1×tan(π-x)=4+$\frac{1}{2}$tanx.于是可得:
①f($\frac{π}{3}$)=$\frac{1}{2}$tan$\frac{π}{3}$=$\frac{\sqrt{3}}{2}$,正確;
②當$\frac{π}{2}$<x≤π-arctan2時,由f(x)=2-$\frac{2}{tanx}$,為增函數(shù).當π-arctan2<x≤π時,f(x)=4+$\frac{1}{2}$tanx,為增函數(shù),因此不正確.
③?x∈[0,$\frac{π}{2}$],由圖形及其上面,利用對稱性可得:f(x)+f(π-x)=4,因此正確;
故選C.

點評 本題考查了圖形面積的計算、正切函數(shù)的單調(diào)性、簡易邏輯的判定,考查了分類討論思想方法、推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

16.設f(x)=(x-2)2ex+ae-x,g(x)=2a|x-2|(e為自然對數(shù)的底數(shù)),若關于x方程f(x)=g(x)有且僅有6個不等的實數(shù)解.則實數(shù)a的取值范圍是( 。
A.($\frac{{e}^{2}}{2e-1}$,+∞)B.(e,+∞)C.(1,e)D.(1,$\frac{{e}^{2}}{2e-1}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.在△ABC中,頂點A(2,1),B(-3,4),C(-1,-1),則△ABC重心G的坐標為(-$\frac{2}{3}$,$\frac{4}{3}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.函數(shù)$y=\frac{cosx}{x}$的導數(shù)為$\frac{-xsinx-cosx}{{x}^{2}}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知f(x)=sin(ωx+θ),其中ω>0,θ∈(0,$\frac{π}{2}$),f(x1)=f(x2)=0,|x2-x1|min=$\frac{π}{2}$.f(x)=f($\frac{π}{3}-x$),將f(x)的圖象向左平移$\frac{π}{6}$個單位得G(x),則G(x)的單調(diào)遞減區(qū)間是(  )
A.[kπ,kπ+$\frac{π}{2}$]B.[kπ+$\frac{π}{6}$,kπ+$\frac{2π}{3}$]C.[kπ+$\frac{π}{3}$,kπ+$\frac{5π}{6}$]D.[kπ+$\frac{π}{12}$,kπ+$\frac{7π}{12}$]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.對具有線性相關關系的兩個變量x和y,測得一組數(shù)據(jù)如下表所示:
x24568
y20406070m
根據(jù)上表,利用最小二乘法得到他們的回歸直線方程為y=10.5x+1.5,則m=(  )
A.85.5B.80C.85D.90

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知函數(shù)f(x)=$\sqrt{3}$sinωx•cosωx-$\frac{1}{2}$cos2ωx(ω>0)的最小正周期為2π
(Ⅰ)求ω的值;
(Ⅱ)在△ABC中,sinB,sinA,sinC成等比數(shù)列,求此時f(A)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.設m,n是兩條不同的直線,α,β是兩個不同的平面,則m∥n 的一個充分不必要條件是( 。
A.m⊥α,n⊥β,α∥βB.m∥α,n∥β,α∥βC.m∥α,n⊥β,α⊥βD.m⊥α,n⊥β,α⊥β

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.若復數(shù)z滿足(2-i)z=1-i(i為虛數(shù)單位),則復數(shù)z在復平面內(nèi)對應的點在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步練習冊答案