定義在上的奇函數(shù)滿足,且在區(qū)間上是增函數(shù),則( )
A. B.
C. D.
D
【解析】
試題分析:由f(x)滿足f(x-4)=-f(x)可變形為f(x-8)=f(x),得到函數(shù)是以8為周期的周期函數(shù),則有f(-5)=f(3)=-f(-1)=f(1),再由f(x)在R上是奇函數(shù),f(0)=0,再由f(x)在區(qū)間[0,2]上是增函數(shù),以及奇函數(shù)的性質(zhì),推出函數(shù)在[-2,2]上的單調(diào)性,即可得到結(jié)論.解:∵f(x)滿足f(x-4)=-f(x),∴f(x-8)=f(x),∴函數(shù)是以8為周期的周期函數(shù),則f(-5)=f(3)=-f(-1)=f(1)又∵f(x)在R上是奇函數(shù),f(0)=0,得f(0)=0,又∵f(x)在區(qū)間[0,2]上是增函數(shù),f(x)在R上是奇函數(shù),∴f(x)在區(qū)間[-2,2]上是增函數(shù),即,故選D
考點(diǎn):函數(shù)的周期性,及函數(shù)的單調(diào)性
點(diǎn)評(píng):本題考查函數(shù)的周期性,及函數(shù)的奇偶性與單調(diào)性,解題的關(guān)鍵是研究清楚函數(shù)的性質(zhì),利用函數(shù)的性質(zhì)將三數(shù)的大小比較問題轉(zhuǎn)化到區(qū)間[-2,2]上比較
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(09年湖北重點(diǎn)中學(xué)聯(lián)考理)(12分)
定義在上的奇函數(shù)滿足=1,且當(dāng)時(shí),有
(1)證明:是上的增函數(shù);
(2)若對(duì)所有的恒成立,求的取值范圍.查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年湖南省懷化市高三第一次模擬考試文科數(shù)學(xué)試卷(解析版) 題型:選擇題
定義在上的奇函數(shù)滿足,且在上單調(diào)遞增,則
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省珠海市高三第一次月考文科數(shù)學(xué) 題型:解答題
(本小題滿分14分)已知定義在上的奇函數(shù)滿足,且對(duì)任意有.
(Ⅰ)判斷在上的奇偶性,并加以證明.
(Ⅱ)令,,求數(shù)列的通項(xiàng)公式.
(Ⅲ)設(shè)為的前項(xiàng)和,若對(duì)恒成立,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年江蘇省常州市教育學(xué)會(huì)高三學(xué)生學(xué)業(yè)水平監(jiān)測(cè)數(shù)學(xué)試卷 題型:填空題
已知定義在上的奇函數(shù)滿足,且
時(shí),,則的值為 ▲ .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:廣州省2009-2010學(xué)年高一學(xué)科競(jìng)賽 題型:選擇題
已知定義在上的奇函數(shù)滿足,則的值為( )
(A)-1 (B)0 (C)1 (D)2
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com