【題目】如圖,四邊形是平行四邊形,點, , 分別為線段, , 的中點.
()證明平面;
()證明平面平面;
()在線段上找一點,使得平面,并說明理由.
【答案】(1)證明見解析;(2)證明見解析;(3)所找的點為與的交點.
【解析】試題分析:(1)由三角形中位線定理可得,由線面平行的判定定理可得平面;(2)先根據(jù)線面平行的判定定理可證明平面, 平面,由面面平行的判定定理可得平面平面;()設, 與分別交于, 兩點,由三角形中位線定理可得,∴平面,即點為所找的點.
試題解析:( )證明:∵、分別是, 中點,
∴,
∵平面, 平面,
∴平面.
()證明:∵、分別是、中點,
∴,
∵平面, 平面,
∴平面,
又∵,
平面, 平面,
∴平面,
點, , 平面,
∴平面平面.
()設, 與分別交于, 兩點,
易知, 分別是, 中點,
∴,
∵平面, 平面,
∴平面,
即點為所找的點.
【方法點晴】本題主要考查線面平行的判定定理、面面平行的判定定理,屬于難題.證明線面平行的常用方法:①利用線面平行的判定定理,使用這個定理的關鍵是設法在平面內找到一條與已知直線平行的直線,可利用幾何體的特征,合理利用中位線定理、線面平行的性質或者構造平行四邊形、尋找比例式證明兩直線平行.②利用面面平行的性質,即兩平面平行,在其中一平面內的直線平行于另一平面. 本題(1)是就是利用方法①證明的.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
()求函數(shù)的定義域.
()判斷在定義域上的單調性,并用單調性定義證明你的結論.
()求函數(shù)的值域.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設{an}是首項為正數(shù)的等比數(shù)列,公比為q,則“q<0”是“對任意的正整數(shù)n,a2n﹣1+a2n<0”的條件.(填“充要條件、充分不必要條件、必要不充分條件、即不充分也不必要條件”)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,內角A,B,C所對的邊分別為a,b,c.已知cos2A+ =2cosA.
(1)求角A的大小;
(2)若a=1,求△ABC的周長l的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知, 為兩條不同的直線, , 為兩個不同的平面,對于下列四個命題:
①, , , ②,
③, , ④,
其中正確命題的個數(shù)有( )
A. 個 B. 個 C. 個 D. 個
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知圓的方程為: ,直線的方程為.
()當時,求直線被圓截得的弦長;
()當直線被圓截得的弦長最短時,求直線的方程;
()在()的前提下,若為直線上的動點,且圓上存在兩個不同的點到點的距離為,求點的橫坐標的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】定義數(shù)列,如果存在常數(shù),使對任意正整數(shù),總有,那么我們稱數(shù)列為“—擺動數(shù)列”.
()設, , ,判斷數(shù)列, 是否為“—擺動數(shù)列”,并說明理由;
(2)已知“—擺動數(shù)列”滿足: ,求常數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知為正整數(shù),數(shù)列滿足, ,設數(shù)列滿足
(1)求證:數(shù)列為等比數(shù)列;
(2)若數(shù)列是等差數(shù)列,求實數(shù)的值;
(3)若數(shù)列是等差數(shù)列,前項和為,對任意的,均存在,使得成立,求滿足條件的所有整數(shù)的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com