【題目】2016年汕頭市開展了一場創(chuàng)文行動一直以來,汕頭市部分市民文明素質(zhì)有待提高、環(huán)境臟亂差現(xiàn)象突出、交通秩序混亂、占道經(jīng)營和違章搭建問題嚴(yán)重,為了解決這一老大難問題,汕頭市政府打了一場史無前例的“創(chuàng)文”仗,目的是全力改善汕頭市環(huán)境、衛(wèi)生道路、交通各方面不文明現(xiàn)象,同時爭奪2020年“全國文明城市”稱號隨著創(chuàng)文活動的進行,我區(qū)生活環(huán)境得到了很大的改善,但因為違法出行的三輪車減少,市民出行偶有不便有一商人從中看到商機,打算開一家汽車租賃公司,他委托一家調(diào)查公司進行市場調(diào)查,調(diào)查公司的調(diào)查結(jié)果如表:
每輛車月租金定價元 | 3000 | 3050 | 3100 | 3150 | 3200 | 3250 | |
能出租的車輛數(shù)輛 | 100 | 99 | 98 | 97 | 96 | 95 |
若他打算購入汽車100輛用于租賃業(yè)務(wù),通過調(diào)查發(fā)現(xiàn)租出的車每輛每月需要維護費150元,未租出的車每輛每月需要維護費50元由上表,他決定每輛車月租金定價滿足:
為方便預(yù)測,月租金定價必須為50的整數(shù)倍;不低于3000元;定價必須使得公司每月至少能租10輛汽車設(shè)租賃公司每輛車月租金定價為x元時,每月能出租的汽車數(shù)量為y輛.
(1)按調(diào)查數(shù)據(jù),請將y表示為關(guān)于x的函數(shù).
(2)當(dāng)x何值時,租賃公司月收益最大?最大月收益是多少?
【答案】(1),,且,;(2) 當(dāng)時,即月租金定為4050時,租賃公司的月收益最大,最大月收益為307050元.
【解析】
由題意結(jié)合表格可知,當(dāng)定價為3000元時,能出租100輛,當(dāng)定價每提升50元時能出租的車輛將減少1輛,據(jù)此列出函數(shù)關(guān)系式即可,注意函數(shù)的定義域.
由結(jié)合題意求得收益函數(shù),,結(jié)合二次函數(shù)的性質(zhì)確定x何值時,租賃公司月收益最大即可.
由表格可知,當(dāng)定價為3000元時,能出租100輛,當(dāng)定價每提升50元時能出租的車輛將減少1輛,
則,
令,得,得,得,
所以所求函數(shù),,且,,
由知,租賃公司的月收益為,
則
,,
當(dāng)時,取得最大值為307050,
即月租金定為4050時,租賃公司的月收益最大,最大月收益為307050元.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有3名男生,4名女生,在下列不同要求下,求不同的排列方法總數(shù).
(1)全體排成一行,其中男生必須排在一起;
(2)全體排成一行,男、女各不相鄰;
(3)全體排成一行,其中甲不在最左邊,乙不在最右邊;
(4)全體排成一行,其中甲、乙、丙三人從左至右的順序不變.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)是兩個不共線的非零向量.
(1)設(shè),,,那么當(dāng)實數(shù)t為何值時,A,B,C三點共線;
(2)若,且與的夾角為60°,那么實數(shù)x為何值時的值最?最小值為多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)用“五點法”畫函數(shù)在某一個周期內(nèi)的圖象時,列表并填入了部分?jǐn)?shù)據(jù),如下表:
(1)請將上表數(shù)據(jù)補充完整;函數(shù)的解析式為 (直接寫出結(jié)果即可);
(2)根據(jù)表格中的數(shù)據(jù)作出一個周期的圖象;
(3)求函數(shù)在區(qū)間上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=Asin(ωx+φ)(A>0,ω>0,)的圖象過點,圖象與P點最近的一個最高點坐標(biāo)為.
(1)求函數(shù)解析式;
(2)求函數(shù)的最小值,并寫出相應(yīng)的x值的集合;
(3)當(dāng)時,求函數(shù)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),任取兩個不相等的正數(shù), ,總有,對于任意的,總有,若有兩個不同的零點,則正實數(shù)的取值范圍為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某班主任對該班22名學(xué)生進行了作業(yè)量的調(diào)查,在喜歡玩電腦游戲的12人中,有10人認(rèn)為作業(yè)多,2人認(rèn)為作業(yè)不多;在不喜歡玩電腦游戲的10人中,有3人認(rèn)為作業(yè)多,7人認(rèn)為作業(yè)不多.
(1)根據(jù)以上數(shù)據(jù)建立一個列聯(lián)表.
(2)對于該班學(xué)生,能否在犯錯誤概率不超過0.01的前提下認(rèn)為喜歡玩電腦游戲與認(rèn)為作業(yè)多有關(guān)系?
下面臨界值表僅供參考:
0.05 | 0.01 | 0.001 | |
3.841 | 6.635 | 10.828 |
參考公式:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年空氣質(zhì)量逐步惡化,霧霾天氣現(xiàn)象增多,大氣污染危害加重.大氣污染可引起心悸、呼吸困難等心肺疾病.為了解某市心肺疾病是否與性別有關(guān),在某醫(yī)院隨機對心肺疾病入院的人進行問卷調(diào)查,得到了如下的列聯(lián)表:
患心肺疾病 | 不患心肺疾病 | 合計 | |
男 | A | ||
女 | |||
合計 | B |
(1)根據(jù)已知條件求出上面的列聯(lián)表中的A和B;用分層抽樣的方法在患心肺疾病的人群中抽人,其中男性抽多少人?
(2)為了研究心肺疾病是否與性別有關(guān),請計算出統(tǒng)計量,并說明是否有的把握認(rèn)為心肺疾病與性別有關(guān)?
下面的臨界值表供參考:
參考公式: ,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù) ,其中 .
(1)試討論函數(shù) 的單調(diào)性;
(2)已知當(dāng) (其中 是自然對數(shù)的底數(shù))時,在 上至少存在一點 ,使 成立,求 的取值范圍;
(3)求證:當(dāng) 時,對任意 ,,有 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com