數(shù)列項和,數(shù)列滿足),
(1)求數(shù)列的通項公式;
(2)求證:當(dāng)時,數(shù)列為等比數(shù)列;
(3)在(2)的條件下,設(shè)數(shù)列的前項和為,若數(shù)列中只有最小,求的取值范圍.

(1);(2)詳見解析;(3).

解析試題分析:(1)由求解,注意,若滿足則不用分段函數(shù),若不滿足則需要用分段函數(shù)表示;(2)要證明數(shù)列是等比數(shù)列,需要證明是常數(shù),由條件只需要證明即可;(3)數(shù)列中只有最小,可確定,再證明數(shù)列是遞增數(shù)列,從而可以確定的取值范圍,.
試題解析:(1),
當(dāng),也滿足,.
(2)
,
所以,且,
所以是以為首項、為公比的等比數(shù)列;
(3)
因為數(shù)列中只有最小,所以,解得;
此時,,于是,為遞增數(shù)列,
所以,符合題意,綜上.
考點:的關(guān)系,等比數(shù)列的性質(zhì),最值問題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列{an}的前n項和Sn=n2+1,數(shù)列{bn}是首項為1,公比為b的等比數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列{anbn}的前n項和Tn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)無窮等比數(shù)列的公比為q,且表示不超過實數(shù)的最大整數(shù)(如),記,數(shù)列的前項和為,數(shù)列的前項和為.
(Ⅰ)若,求;
(Ⅱ)若對于任意不超過的正整數(shù)n,都有,證明:.
(Ⅲ)證明:)的充分必要條件為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知曲線C:y=x2(0≤x≤1),O(0,0),Q(1,0),R(1,1).取線段OQ的中點A1,過A1作x軸的垂線交曲線C于P1,過P1作y軸的垂線交RQ于B1,記a1為矩形A1P1B1Q的面積.分別取線段OA1,P1B1的中點A2,A3,過A2,A3分別作x軸的垂線交曲線C于P2,P3,過P2,P3分別作y軸的垂線交A1P1,RB1于B2,B3,記a2為兩個矩形A2P2B2 A1與矩形A3P3B3B1的面積之和.以此類推,記an為2n-1個矩形面積之和,從而得數(shù)列{an},設(shè)這個數(shù)列的前n項和為Sn

(I)求a2與an
(Ⅱ)求Sn,并證明Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列為等差數(shù)列,為其前項和,且
(1)求數(shù)列的通項公式;(2)求證:數(shù)列是等比數(shù)列;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)數(shù)列的前項和為,
(1)求,
(2)設(shè),證明:數(shù)列是等比數(shù)列;
(3)求數(shù)列的前項和為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列為等比數(shù)列,其前項和為,已知,且,成等差,
(Ⅰ)求數(shù)列的通項公式;
(Ⅱ)已知),記,若對于恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等比數(shù)列單調(diào)遞增,,,
(Ⅰ)求
(Ⅱ)若,求的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知=2,點()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設(shè),求及數(shù)列{}的通項公式;
(3)記,求數(shù)列{}的前n項和,并求的值.

查看答案和解析>>

同步練習(xí)冊答案