【題目】已知數(shù)列{an}的首項(xiàng)a1=a,其前n項(xiàng)和為Sn , 且滿足Sn+Sn1=3n2+2n+4(n≥2),若對(duì)任意的n∈N* , an<an+1恒成立,則a的取值范圍是(
A.( ,
B.(
C.( ,
D.(﹣∞,

【答案】C
【解析】解:由Sn+Sn1=3n2+2n+4(n≥2),可以得到Sn+1+Sn=3(n+1)2+2(n+1)+4, 兩式相減得an+1+an=6n+5,
故an+2+an+1=6n+11,兩式再相減得an+2﹣an=6,
由n=2得a1+a2+a1=20,a2=20﹣2a,
故偶數(shù)項(xiàng)為以20﹣2a為首項(xiàng),以6為公差的等差數(shù)列,
從而a2n=6n+14﹣2a;
n=3得a1+a2+a3+a1+a2=37,a3=2a﹣3,
從而a2n+1=6n﹣9+2a,
由條件得
解得 <a< ,
故選:C.
【考點(diǎn)精析】本題主要考查了數(shù)列的通項(xiàng)公式的相關(guān)知識(shí)點(diǎn),需要掌握如果數(shù)列an的第n項(xiàng)與n之間的關(guān)系可以用一個(gè)公式表示,那么這個(gè)公式就叫這個(gè)數(shù)列的通項(xiàng)公式才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等比數(shù)列是遞增數(shù)列,其前項(xiàng)和為,且

I)求數(shù)列的通項(xiàng)公式;

II設(shè),求數(shù)列的前 項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿分12分)

在如圖所示的多面體中,四邊形都為矩形。

)若,證明:直線平面

)設(shè), 分別是線段, 的中點(diǎn),在線段上是否存在一點(diǎn),使直線平面?請(qǐng)證明你的結(jié)論。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】

已知函數(shù)),記的導(dǎo)函數(shù)為

(1)證明:當(dāng)時(shí),上單調(diào)遞增;

(2)若處取得極小值,求的取值范圍;

(3)設(shè)函數(shù)的定義域?yàn)?/span>,區(qū)間,若上是單調(diào)函數(shù),

則稱上廣義單調(diào).試證明函數(shù)上廣義單調(diào).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線,問(wèn)是否存在實(shí)數(shù)a,使得經(jīng)過(guò)點(diǎn)(1,a)能夠作出該曲線的兩條切線?若存在求出實(shí)數(shù)a的取值范圍,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列的前項(xiàng)和,且2的等差中項(xiàng).

1)求數(shù)列的通項(xiàng)公式;

2)若,求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知向量 =(1+sin2x,sinx﹣cosx), =(1,sinx+cosx),函數(shù)f(x)=
(1)求函數(shù)f(x)的最小正周期;
(2)求函數(shù)f(x)的最大值及取得最大值相應(yīng)的x的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某算法的程序框圖如圖所示,其中輸入的變量x在1,2,3,…,24這24個(gè)整數(shù)中等可能隨機(jī)產(chǎn)生.

(1)分別求出按程序框圖正確編程運(yùn)行時(shí)輸出y的值為i的概率Pi(i=1,2,3);
(2)甲、乙兩同學(xué)依據(jù)自己對(duì)程序框圖的理解,各自編寫(xiě)程序重復(fù)運(yùn)行n次后,統(tǒng)計(jì)記錄了輸出y的值為i(i=1,2,3)的頻數(shù).以下是甲、乙所作頻數(shù)統(tǒng)計(jì)表的部分?jǐn)?shù)據(jù).
甲的頻數(shù)統(tǒng)計(jì)表(部分)

運(yùn)行
次數(shù)n

輸出y的值
為1的頻數(shù)

輸出y的值
為2的頻數(shù)

輸出y的值
為3的頻數(shù)

30

14

6

10

2100

1027

376

697

乙的頻數(shù)統(tǒng)計(jì)表(部分)

運(yùn)行
次數(shù)n

輸出y的值
為1的頻數(shù)

輸出y的值
為2的頻數(shù)

輸出y的值
為3的頻數(shù)

30

12

11

7

2100

1051

696

353

當(dāng)n=2100時(shí),根據(jù)表中的數(shù)據(jù),分別寫(xiě)出甲、乙所編程序各自輸出y的值為i(i=1,2,3)的頻率(用分?jǐn)?shù)表示),并判斷兩位同學(xué)中哪一位所編寫(xiě)程序符合算法要求的可能性較大.

查看答案和解析>>

同步練習(xí)冊(cè)答案