已知圓O的方程(x-3)2+(y-4)2=25,點(2,3)到圓上的最大距離為
 
考點:圓的標(biāo)準(zhǔn)方程
專題:直線與圓
分析:求得點(2,3)到圓心的距離為d的值,則點(2,3)到圓上的最大距離為d+r,計算可得結(jié)果.
解答: 解:由圓O的方程(x-3)2+(y-4)2=25可得圓心坐標(biāo)為(3,4)、半徑為r=5,
點(2,3)到圓心的距離為d=
2
,故點(2,3)到圓上的最大距離為d+r=
2
+5,
故答案為:
2
+5.
點評:本題主要考查圓的標(biāo)準(zhǔn)方程,點和圓的位置關(guān)系,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在直三棱柱ABC-A1B1C1中,AC=4,BC=2,AB=2AA1=2
3
,F(xiàn)是BC上任一點,E為AC1上的一點,且EC1=2A1E.
(1)求證平面AEB⊥平面B1FC1
(2)當(dāng)點F位于BC何處時,C1F∥平面AEB?并求出此時三棱錐C1-B1EF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1-m•2x
1+m•2x
,若函數(shù)f(x)滿足|f(x)|≤3對任意x∈[0,1]恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,CF是△ABC邊AB上的高,F(xiàn)P⊥BC,F(xiàn)Q⊥AC.
(1)證明:A、B、P、Q四點共圓;
(2)若CQ=4,AQ=1,PF=
4
5
3
,求CB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)y=x3+x2-x-1的單調(diào)區(qū)間和極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線的對稱軸為坐標(biāo)軸,兩個頂點間的距離為2,焦點到漸進(jìn)線的距離為
2
,求該雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)拋物線y2=16x的焦點F,其準(zhǔn)線與x軸交于點K,M(x,y)是拋物線上的動點,則△MKF的重心G的軌跡方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線y=x+2,點P是曲線y=x2-lnx上任意一點,求點P到該已知直線的最小距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

試確定m的值,使過點A(m,1),B(-1,m)的直線與過點P(1,2),Q(-5,0)的直線:
(1)平行;
(2)垂直.

查看答案和解析>>

同步練習(xí)冊答案