正四面體ABCD的棱長為1,G是△ABC的中心,M在線段DG上,且∠AMB=90°,則GM的長為( 。精英家教網(wǎng)
A、
1
2
B、
2
2
C、
3
3
D、
6
6
分析:由題意可知,三角形AMB是等腰直角三角形,求得MA,然后求得MG.
解答:解:M在AB垂直平分線上,MA=MB=
2
2
,MG=
MA2-AG2
=
6
6

故選D.
點評:本題考查棱錐的結(jié)構(gòu)特征,考查空間想象能力,邏輯思維能力,是中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

正四面體ABCD的棱長為a,點E,F(xiàn),G分別是棱AB,AD,DC的中點,則三個數(shù)量積:①2
BA
AC
;②2
AD
BD
;③2
FG
AC
中,結(jié)果為a2的序號為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

正四面體ABCD的棱長為1,棱AB∥平面α,則正四面體上的所有點在平面α內(nèi)的射影構(gòu)成的圖形面積的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•溫州一模)如圖,直線l⊥平面α,垂足為O,正四面體ABCD的棱長為4,C在平面α內(nèi),B是直線l上的動點,則當O到AD的距離為最大時,正四面體在平面α上的射影面積為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知正四面體ABCD的棱長為a,E為CD上一點,且CE:ED=2:1,則截面△ABE的面積是( 。

查看答案和解析>>

同步練習冊答案