在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),若以直角坐標系的原點為極點,軸的正半軸為極軸建立極坐標,曲線的極坐標方程為(其中為常數(shù)).
(1)若曲線與曲線只有一個公共點,求的取值范圍;
(2)當時,求曲線上的點與曲線上的點的最小距離
(1)或;(2).
解析試題分析:本題考查極坐標與直角坐標之間的轉(zhuǎn)化,參數(shù)方程與普通方程之間的轉(zhuǎn)化,考查學(xué)生的轉(zhuǎn)化能力和計算能力,考查數(shù)形結(jié)合思想.第一問,把參數(shù)方程和極坐標方程先進行轉(zhuǎn)化,再利用數(shù)形結(jié)合解題;第二問,考查點到直線的距離公式,利用配方法求最小值.
試題解析:(1)曲線可化為,,
曲線可化為,
若曲線,只有一個公共點,
則當直線過點時滿足要求,此時,
并且向左下方平行運動直到過點之前總是保持只有一個公共點,
當直線N過點時,此時,
所以滿足要求;
再接著從過點開始向左下方平行運動直到相切之前總有兩個公共點,相切時仍然只有一個公共點,聯(lián)立,得,
,解得,
綜上可求得的取值范圍是或.(5分)
(2)當時,直線,
設(shè)上的點為,,
則曲線上的點到直線的距離為,
當時取等號,滿足,所以所求的最小距離為.(10分)
考點:1.參數(shù)方程與普通方程的互化;2.極坐標方程與直角坐標方程的互化;3.點到直線的距離公式;4.配方法求最值.
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知直線的參數(shù)方程為,(為參數(shù)),圓的參數(shù)方程為 ,(為參數(shù)).
(1)求直線和圓的普通方程;
(2)若直線與圓有公共點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標系中,曲線的參數(shù)方程為 (為參數(shù)),曲線的參數(shù)方程為(為參數(shù)).在以為極點,軸的正半軸為極軸的極坐標系中,射線與,各有一個交點.當時,這兩個交點間的距離為,當時,這兩個交點重合.
(Ⅰ)分別說明,是什么曲線,并求出a與b的值;
(Ⅱ)設(shè)當時,與,的交點分別為,當時,與,的交點分別為,求四邊形的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知直線l過點P(2,0),斜率為直線l和拋物線y2=2x相交于A、B兩點,設(shè)線段AB的中點為M,求:(1)|PM|; (2)|AB|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題10分)選修4—4:坐標系與參數(shù)方程
已知曲線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為。
(Ⅰ)把的參數(shù)方程化為極坐標方程;
(Ⅱ)求與交點的極坐標()。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
極坐標系與直角坐標系有相同的長度單位,以原點為極點,以軸正半軸為極軸.已知直線的參數(shù)方程為(為參數(shù)),曲線的極坐標方程為.
(Ⅰ)求的直角坐標方程;
(Ⅱ)設(shè)直線與曲線交于兩點,求弦長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
某單位有職工750人,其中青年職工350人,中年職工250人,老年職工150人,為了了解該單位職工的健康情況,用分層抽樣的方法從中抽取樣本.若樣本中的中年職工為5人,則樣本容量為( )
A.7 | B.15 | C.25 | D.35 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com