若函數(shù)f(x)=x2+4x+5-c的最小值為2,則函數(shù)f(x-2014)的最小值為
 
考點:二次函數(shù)的性質
專題:函數(shù)的性質及應用
分析:先將函數(shù)進行配方,求出c的值,從而表示出f(x-2014),進而求出函數(shù)的最小值.
解答: 解:∵函數(shù)f(x)=x2+4x+5-c的最小值為2,
∴f(x)=(x+2)2+1-c=2,
∴c=-1,
∴f(x-2014)=(x-2014+2)2+2,
∴函數(shù)f(x-2014)的最小值為2,
故答案為:2.
點評:本題考查了二次函數(shù)的性質,函數(shù)的最值問題,是一道基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2+bx+4(b∈R)
(1)若函數(shù)f(x)在閉區(qū)間[1,3]有且只有一個零點,求b的取值范圍;
(2)對任意x1,x2∈[-1,1],f(x1)-f(x2)≤4恒成立,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x+alnx
(Ⅰ)當a=1時,求曲線y=f(x)在點(1,f(1))處的切線方程;
(Ⅱ)求f(x)的單調區(qū)間及極值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
OA
=(3,-1),
OB
=(0,2),若
OC
AB
=0,
AC
OB
,則實數(shù)λ的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

2
1
1
xlna
dx=-1則實數(shù)a的值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求下列函數(shù)的值域
(1)y=2x+4
1-x
;
(2)y=6-
-x2-6x-5
;
(3)y=
4
x-1
(x<0或2<x<5).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知拋物線y2=4ax(a>0)的焦點為A,以B(a+4,0)為圓心,|AB|長為半徑,在x軸上方的半圓交拋物線于不同的兩點M、N,P是MN的中點.
(1)求實數(shù)a的取值范圍;
(2)求|AM|+|AN|的值;
(3)是否存在這樣的a值,使|AM|,|AP|,|AN|成等差數(shù)列?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
m
=(cos
x
2
,-1),
n
=(
3
sin
x
2
,cos2
x
2
)
,設函數(shù)f(x)=
m
n

(Ⅰ)求f(x)在區(qū)間[0,π]上的零點;
(Ⅱ)在△ABC中,角A、B、C的對邊分別是a,b,c,且滿足b2=ac,求f(B)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

以下四個命題,其中正確的是
 

①從勻速傳遞的產(chǎn)品生產(chǎn)流水線上,質檢員每20分鐘從中抽取一件產(chǎn)品進行某項指標檢測,這樣的抽樣是分層抽樣;
②拋擲兩個骰子,則兩個骰子點數(shù)之和大于4的概率為
5
6

③在回歸直線方程y=0.2x+12中,當解釋變量x每增加一個單位時,預報變量y平均增加0.2單位;
④對分類變量X與Y,它們的隨機變量K2(χ2)的觀測值k來說,k越大,“X與Y有關系”的把握程度越大.

查看答案和解析>>

同步練習冊答案