分析 令t=-x2+2x+3,求出該二次函數(shù)的單調區(qū)間及最大值,然后結合復合函數(shù)的單調性求得函數(shù)y=3${\;}^{-{x}^{2}+2x+3}$的值域和單調區(qū)間.
解答 解:令t=-x2+2x+3,
其對稱軸方程為x=1,且開口向下,
∴內函數(shù)t=-x2+2x+3在(-∞,1)上為增函數(shù),在(1,+∞)上為減函數(shù).
且最大值為-12+2×1+3=4.
而外函數(shù)y=3t為定義域內的增函數(shù),
由復合函數(shù)的單調性可得,函數(shù)y=3${\;}^{-{x}^{2}+2x+3}$的值域為:(0,81];
單調增區(qū)間為(-∞,1),減區(qū)間為(1,+∞).
點評 本題主要考查了復合函數(shù)的單調性以及單調區(qū)間的求法.對應復合函數(shù)的單調性,一要注意先確定函數(shù)的定義域,二要利用復合函數(shù)與內層函數(shù)和外層函數(shù)單調性之間的關系進行判斷,判斷的依據是“同增異減”,是中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | -1 | B. | -2 | C. | -3 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ①③ | B. | ①④ | C. | ②③ | D. | ②④ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (0,1] | B. | (0,2) | C. | $({0,\frac{3}{2}}]$ | D. | (0,2] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
男生 | 女生 | 合計 | |
收看 | 10 | ||
不收看 | 8 | ||
合計 | 30 |
P(K2>k0) | 0.100 | 0.050 | 0.010 |
k0 | 2.706 | 3.841 | 6.635 |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com