【題目】已知函數(shù)f(x)= [ sin(x﹣ )].
(1)求f(x)的定義域和值域;
(2)說明f(x)的奇偶性;
(3)求f(x)的單調(diào)增區(qū)間.
【答案】
(1)解:由題意得 ,即 ,
所以 ,
所以
因此f(x)的定義域為
又因為 ,所以 ,
再考察 的圖象,可知 ,
所以f(x)的值域為
(2)解:由(1)知f(x)的定義域不關(guān)于原點對稱,故f(x)是非奇非偶函數(shù)
(3)解:由題意可知
即 ,
所以f(x)的單調(diào)增區(qū)間為
【解析】(1)根據(jù)函數(shù)成立的條件結(jié)合對數(shù)函數(shù)的性質(zhì)進行求解即可.(2)根據(jù)函數(shù)奇偶性的定義進行判斷(3)根據(jù)復(fù)合函數(shù)單調(diào)性之間的關(guān)系進行求解.
【考點精析】根據(jù)題目的已知條件,利用復(fù)合函數(shù)單調(diào)性的判斷方法和函數(shù)的奇偶性的相關(guān)知識可以得到問題的答案,需要掌握復(fù)合函數(shù)f[g(x)]的單調(diào)性與構(gòu)成它的函數(shù)u=g(x),y=f(u)的單調(diào)性密切相關(guān),其規(guī)律:“同增異減”;偶函數(shù)的圖象關(guān)于y軸對稱;奇函數(shù)的圖象關(guān)于原點對稱.
科目:高中數(shù)學 來源: 題型:
【題目】先后2次拋擲一枚骰子,將得到的點數(shù)分別記為, .
(1)求直線與圓相切的概率;
(2)將, ,5的值分別作為三條線段的長,求這三條線段能圍成等腰三角形的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】給出下列命題:
①函數(shù) 是奇函數(shù);
②存在實數(shù)x,使sinx+cosx=2;
③若α,β是第一象限角且α<β,則tanα<tanβ;
④ 是函數(shù) 的一條對稱軸;
⑤函數(shù) 的圖象關(guān)于點 成中心對稱.
其中正確命題的序號為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某數(shù)學老師對本校2013屆高三學生某次聯(lián)考的數(shù)學成績進行分析,按1:50進行分層抽樣抽取20名學生的成績進行分析,分數(shù)用莖葉圖記錄如圖所示(部分數(shù)據(jù)丟失),得到的頻率分布表如下:
分數(shù)段(分) | [50,70] | [70,90] | [90,110] | [110,130] | [130,150] | 合計 |
頻數(shù) | b | |||||
頻率 | a | 0.25 |
(1)表中a,b的值及分數(shù)在[90,100)范圍內(nèi)的學生,并估計這次考試全校學生數(shù)學成績及格率(分數(shù)在[90,150]范圍為及格);
(2)從大于等于110分的學生隨機選2名學生得分,求2名學生的平均得分大于等于130分的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】咖啡館配制兩種飲料,甲種飲料分別用奶粉、咖啡、糖。乙種飲料分別用奶粉、咖啡、糖。已知每天使用原料限額為奶粉、咖啡、糖。如果甲種飲料每杯能獲利元,乙種飲料每杯能獲利元。每天在原料的使用限額內(nèi)飲料能全部售出,每天應(yīng)配制兩種飲料各多少杯能獲利最大?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四邊形OQRP為矩形,其中P,Q分別是函數(shù)f(x)= sinwx(A>0,w>0)圖象上的一個最高點和最低點,O為坐標原點,R為圖象與x軸的交點.
(1)求f(x)的解析式
(2)對于x∈[0,3],方程f2(x)﹣af(x)+1=0恒有四個不同的實數(shù)根,求實數(shù)a的取值范圍
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com