13.判斷命題“A∩C=B∩C,則A=B“的真假,并說(shuō)明理由.

分析 可以用特殊值的方法進(jìn)行判斷

解答 解:命題為假命題
比如C集合為非負(fù)正數(shù)集,A集合為非正整數(shù)集,則交集為{0},
此時(shí)B集合也可為{0},故A不一定等與B集合.
故為假命題.

點(diǎn)評(píng) 考查了集合的交集,屬于概念知識(shí)的考查,應(yīng)熟練掌握.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.當(dāng)x∈R時(shí),(a2-1)x2+(a-1)x+$\frac{2}{a+1}$≥0恒成立,則實(shí)數(shù)a的取值范圍為[1,9].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.若不等式x2+a<0的解集為∅,那么a的取值范圍是( 。
A.a<0B.a≥0C.a>1D.a≤1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.若函數(shù)f(x)=kx-ex有零點(diǎn),則實(shí)數(shù)k的取值范圍為( 。
A.k<0B.k≥eC.k≥e或k<0D.0<k≤e

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.設(shè)奇函數(shù)f(x)的定義域?yàn)镽,且對(duì)任意的非零實(shí)數(shù)m,均有f($\frac{1}{m}$)=$\frac{1}{f(m)}$成立,當(dāng)x∈(1,+∞)時(shí),f(x)=x2-ax+2,若函數(shù)f(x)的值域?yàn)镽,則實(shí)數(shù)a的取值范圍為[2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.甲、乙兩人輪流投籃,每人每次投一次籃,先投中者獲勝.投籃進(jìn)行到有人獲勝或每人都已投球3次時(shí)結(jié)束.設(shè)甲每次投籃命中的概率為$\frac{2}{5}$,乙每次投籃命中的概率為$\frac{2}{3}$,且各次投籃互不影響.現(xiàn)由甲先投.
(1)求甲獲勝的概率;
(2)求投籃結(jié)束時(shí)甲的投籃次數(shù)X的分布列與期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.若集合A={y|y=x2-1,x∈R}.B={y|y=x-1,x∈R},則A∩B等于( 。
A.{(0,-1),(1,0)}B.{0,1}C.{-1,0}D.{y|y≥-1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.?dāng)?shù)列{an}為一等比數(shù)列,an>0,a2=4,a4=16,求$\underset{lim}{n→∞}$$\frac{lg{a}_{n+1}+lg{a}_{n+2}+…+lg{a}_{2n}}{{n}^{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=$\frac{1}{2}$x2-2x+a2lnx,(a>0)
(Ⅰ)若函數(shù)y=f(x)在x∈($\frac{1}{2}$,1)上有最大值,求a的取值范圍;
(Ⅱ)若a≥$\sqrt{6}$,n∈N*,且n≥2
求證:
①$\sum_{i=1}^{n}$f(xi)>0;
②a2ln$\frac{1}{n!}$<$\frac{n(n+1)(2n-11)}{12}$
(提示:12+22+33+…+n2=$\frac{n(n+1)(2n+1)}{6}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案