【題目】如圖,在中, ,角的平分線于點(diǎn),設(shè).(1)求;(2)若,求的長.

【答案】(1)(2)

【解析】試題分析:1)由α為三角形BAD中的角,根據(jù)sinα的值,利用同角三角函數(shù)間的基本關(guān)系求出cosα的值,進(jìn)而利用二倍角的正弦函數(shù)公式求出sinBACcosBAC的值,即為sin2αcos2α的值,sinC變形為,利用誘導(dǎo)公式,以及兩角和與差的正弦函數(shù)公式化簡后,將各自的值代入計(jì)算即可求出sinC的值;

(2)利用正弦定理列出關(guān)系式,將sinCsinBAC的值代入得出,利用平面向量的數(shù)量積運(yùn)算法則化簡已知等式左邊,將表示出的AB代入求出BC的長,再利用正弦定理即可求出AC的長.

試題解析:

解:(1)∵ ,

,

,

(2)由正弦定理,得,即,∴

,∴,由上兩式解得

又由,∴

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,高爾頓板是英國生物統(tǒng)計(jì)學(xué)家高爾頓設(shè)計(jì)的用來研究隨機(jī)現(xiàn)象的模型,它是在一塊豎起的木板上釘上一排排互相平行,水平間隔相等的圓柱形鐵釘,并且每一排釘子數(shù)目都比上一排多一個(gè),一排中各個(gè)釘子恰好對(duì)準(zhǔn)上面一排兩相鄰鐵釘?shù)恼醒,從入口處放入一個(gè)直徑略小于兩顆釘子間隔的小球,當(dāng)小球從兩釘之間的間隙下落時(shí),由于碰到下一排鐵釘,它將以相等的可能性向左或向右落下,接著小球再通過兩釘?shù)拈g隙,又碰到下一排鐵釘,如此繼續(xù)下去,在最底層的5個(gè)出口處各放置一個(gè)容器接住小球,那么,小球落入1號(hào)容器的概率是______,若取4個(gè)小球進(jìn)行試驗(yàn),設(shè)其中落入4號(hào)容器的小球個(gè)數(shù)為x,則x的數(shù)學(xué)期望是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在棱長為的正方體中,是面對(duì)角線上兩個(gè)不同的動(dòng)點(diǎn).以下四個(gè)命題:①存在兩點(diǎn),使;②存在兩點(diǎn),使與直線都成的角;③若,則四面體的體積一定是定值;④若,則四面體在該正方體六個(gè)面上的正投影的面積的和為定值.其中為真命題的是____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知、是橢圓上關(guān)于軸對(duì)稱的兩點(diǎn),的左焦點(diǎn),.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)斜率為的直線過點(diǎn),和橢圓相交于、兩點(diǎn),,.點(diǎn)坐標(biāo)是,設(shè)的面積為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著手機(jī)的發(fā)展,“微信”逐漸成為人們交流的一種形式.某機(jī)構(gòu)對(duì)“使用微信交流”的態(tài)度進(jìn)行調(diào)查,隨機(jī)抽取了50人,他們年齡的頻數(shù)分布及對(duì)“使用微信交流”贊成人數(shù)如下表.

年齡

(單位:歲)

[15,25)

[25,35)

[35,45)

[45,55)

[55,65)

[65,75]

頻數(shù)

5

10

15

10

5

5

贊成人數(shù)

5

10

12

7

2

1

(1)若以“年齡45歲為分界點(diǎn)”,由以上統(tǒng)計(jì)數(shù)據(jù)完成下面2×2列聯(lián)表,并判斷是否有99%的把握認(rèn)為“使用微信交流”的態(tài)度與人的年齡有關(guān);

年齡不低于45歲的人數(shù)

年齡低于45歲的人數(shù)

合計(jì)

贊成

不贊成

合計(jì)

(2)若從年齡在[55,65)的被調(diào)查人中隨機(jī)選取2人進(jìn)行追蹤調(diào)查,求2人中至少有1人不贊成“使用微信交流”的概率.

參考數(shù)據(jù):

P(K2k0)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.072

2.706

3.841

5.024

6.635

7.879

10.828

K2,其中nabcd.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,點(diǎn)是曲線上的任意一點(diǎn),動(dòng)點(diǎn)滿足

1)求點(diǎn)的軌跡方程;

2)經(jīng)過點(diǎn)的動(dòng)直線與點(diǎn)的軌跡方程交于兩點(diǎn),在軸上是否存在定點(diǎn)(異于點(diǎn)),使得?若存在,求出的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)討論的單調(diào)性;

2)設(shè),且,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓),點(diǎn)的左頂點(diǎn),點(diǎn)上一點(diǎn),離心率.

1)求橢圓的方程;

2)設(shè)過點(diǎn)的直線的另一個(gè)交點(diǎn)為(異于點(diǎn)),是否存在直線,使得以為直徑的圓經(jīng)過點(diǎn),若存在,求出直線的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知平面向量,滿足,若對(duì)每一個(gè)確定的向量,記的最小值為,則當(dāng)變化時(shí),的最大值為(

A.B.C.D.1

查看答案和解析>>

同步練習(xí)冊(cè)答案